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Abstract

The success of Graph Neural Networks (GNNs) leverages the homophily prin-
ciple, where connected nodes share similar features and labels. However, this
assumption breaks down in heterophilic graphs, where same-class nodes are often
distributed across distant neighborhoods rather than immediate connections. Re-
cent attempts expand the receptive field through multi-hop aggregation schemes
that explicitly preserve intermediate representations from each hop distance. While
effective at capturing heterophilic patterns, these methods require separate weight
matrices per hop and feature concatenation, causing parameters to scale linearly
with hop count. This leads to high computational complexity and GPU memory
consumption. We propose Gated Multi-hop Message Passing (GAMMA), where
nodes assess how relevant the aggregated information is from their k-hop neigh-
bors. This assessment occurs through multiple refinement steps where the node
compares each hop’s embedding with its current representation, allowing it to
focus on the most informative hops. During the forward pass, GAMMA finds the
optimal mix of multi-hop information local to each node using a single feature
vector without needing separate representations for each hop, thereby maintaining
dimensionality comparable to single hop GNNs. In addition, we propose a weight
sharing scheme that leverages a unified transformation for aggregated features
from multiple hops so the global heterophilic patterns specific to each hop are
learned during training. As such, GAMMA captures both global (per-hop) and local
(per-node) heterophily patterns without high computation and memory overhead.
Experiments show GAMMA matches or exceeds state-of-the-art heterophilic GNN
accuracy, achieving up to ≈ 20× faster inference. Our code is publicly available at
https://github.com/amir-ghz/GAMMA.

1 Introduction
Graph Neural Networks (GNNs) [14, 10, 34] have become the standard model for learning graph-
structured data across domains such as social and molecular networks [9, 16]. Their core strength lies
in message passing [33], which iteratively aggregates features from local neighborhoods to capture
structural information. However, most standard GNNs implicitly rely on the homophily assumption,
where connected nodes are likely to share similar labels or features, limiting their effectiveness on
heterophilic graphs, where connected nodes frequently belong to different classes [40, 39].

Conventional GNNs, such as GCN [14] and GAT [34] are agnostic to feature similarity of aggregated
nodes [22, 40]. Such GNNs function as low-pass filters, smoothing representations across neighbor-
hoods [25], which enhances class signals in homophilic graphs but obscures them in heterophilic
ones. This fundamental limitation has motivated significant research into heterophily-specific GNN
architectures [39].

Existing approaches to heterophilic graph learning broadly fall into several categories. Some works
aim to capture global heterophily by enabling nodes to aggregate information from potentially
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similar nodes graph-wide. For example, one strategy requires pre-computation to estimate structural
similarities, as explored by methods like SimP-GCN [13] and Geom-GCN [29]. Other approaches
utilize learned affinity matrices to dynamically capture global heterophily patterns, exemplified by
models such as NL-GNN [20] and CPGNN [41]. Alternatively, some methods incorporate higher-
order neighborhoods, seeking same-class nodes from long range dependencies [1, 29]. For example,
H2GCN [40] emphasizes the aggregation of 2-hop neighbors while MixHop [1] concatenates features
of nodes upto k-hops so each node is represented using its multi-hop features as its intermediate
representation. Unfortunately, incorporating higher-order features requires compute and memory
intensive operations that are not GPU friendly.

Despite these efforts, developing GNNs that are both effective and scalable across the diverse
landscape of heterophilic graphs remains a significant challenge. Most importantly, computation
efficiency has been largely an afterthought in heterophilic GNN design. Our analysis reveals that
state-of-the-art heterophilic GNNs like H2GCN [40] can consume over 6× more GPU memory
than vanilla GCN with a 33× increase in execution time, a prohibitive cost for many real-world
applications.

Moreover, real-world graphs rarely exhibit purely homophilic or heterophilic structures. Instead,
they display mixed homophily-heterophily patterns, where optimal feature aggregation varies across
different nodes and hops [23]. For instance, fraud detection graphs are largely heterophilic, where
fraudulent users often connect to legitimate ones, yet include homophilic clusters of coordinated
fraudulent activities [6]. Similarly, protein-protein interaction networks, though generally heterophilic,
contain homophilic subclusters of functionally related proteins [21]. Thus, GNNs must adopt message
passing schemes capable of modeling global heterophily while exploiting localized homophily.

To address these challenges, we propose Gated Multi-hop Message Passing (GAMMA), a novel
GNN architecture for heterophilic graphs that balances accuracy with computational efficiency. Our
contributions are summarized as follows:

• Comprehensive computational analysis: We provide the first systematic analysis of com-
putational requirements and performance bottlenecks across 13 state-of-the-art heterophilic
GNN architectures, revealing critical efficiency gaps in current designs.

• Adaptive node-specific message passing: We introduce a lightweight iterative gating
mechanism that enables each node to dynamically assess the relevance of aggregated
information from its k-hop neighbors, capturing node-specific local heterophily patterns on
the fly.

• Efficient weight sharing scheme: We propose a parameter-efficient approach using learn-
able scaling vectors that leverages a unified transformation for features from multiple hops,
capturing global heterophilic patterns specific to each hop during training while significantly
reducing memory requirements by up to 12 times compared to the state of the art.

• State-of-the-art performance with efficiency: Extensive experiments demonstrate that
GAMMA matches or exceeds state-of-the-art heterophilic GNN accuracy while achieving
up to 20× faster inference and substantially lower memory consumption on commodity
GPUs.

By capturing both global (per-hop) and local (per-node) heterophily patterns without high computa-
tional overhead, GAMMA makes heterophilic graph learning practical for real-world applications on
commodity hardware.

2 Heterophilic Graph Characteristics and Performance Analysis
Our investigation reveals two critical aspects of heterophilic graph learning: the complex, non-uniform
heterophily distributions across node neighborhoods and the significant computational overhead of
current heterophilic GNN designs.
Heterophily is not a monolithic property. Most existing GNNs assume uniform heterophily
patterns across all nodes, but our analysis reveals that real-world heterophilic graphs exhibit complex,
node-specific patterns that vary significantly across hop distances. The node homophily ratio is the
proportion of a node’s neighbors that share the same class label as the node itself [30].

Fig. 1 demonstrates two distinct manifestations of this heterogeneity. First, we observe dataset-level
heterophily evolution: different datasets exhibit fundamentally different patterns of how homophily
changes with hop distance. The Cornell dataset shows a non-monotonic, oscillating pattern, where
1-hop neighborhoods exhibit severe heterophily (79.8% of nodes having homophily ratios ≤ 0.05),
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which increases substantially at 2-hops (mean of 0.456), but then decreases again at 3-hops (mean of
0.266). In contrast, the Tolokers dataset displays a progressively increasing homophily trend with
distance (0.634 → 0.654 → 0.660 for 1-, 2-, and 3-hops respectively), suggesting that same-class
nodes become more accessible at greater distances.

Figure 1: Node homophily density across 3-hop
distances in cornell and tolokers.

However, the more critical insight lies in the
node-level heterophily diversity. Within the same
dataset and hop distance, individual nodes ex-
hibit dramatically different homophily patterns.
For instance, in Cornell’s 2-hop neighborhoods,
while 44.8% of nodes concentrate around high
homophily (0.72), others span the entire spec-
trum from 0.02 to 1.0. This variance indicates
that Node i might experience a heterophily tra-
jectory of [high, low, medium] across 1-2-3 hops,
while Node j in the same graph follows an en-
tirely different pattern such as [low, high, low].
Unlike global parameters that assume all nodes benefit equally from information at a specific hop
distance, this node-specific heterophily requires adaptive mechanisms that allow each node to identify
which hop distances contain the most relevant class information for its individual prediction task.

These observations reveal that heterophily is neither a monolithic graph-level property nor a uniform
node-level characteristic. Instead, it manifests as a multi-faceted phenomenon with both global struc-
tural patterns (varying across datasets) and highly individualized local neighborhood configurations
(varying across nodes within the same graph), necessitating architectures that can adapt to both levels
of heterogeneity simultaneously.
GPU efficiency analysis. Current heterophilic GNN architectures face significant performance
challenges on commodity hardware. While efficient GPU execution relies on dense matrix multi-
plications, heterophilic multi-hop GNNs often require recursive sparse-dense operations, feature
concatenation [1], and intermediate storage [40] that substantially increase computational overhead.
From a memory perspective, high usage arises from concatenating features across multiple hops
and caching intermediate embeddings. For instance, BernNet’s Kth-order filter requires K separate
sparse–dense multiplications, each a distinct pass over the edge list with its own kernel overhead and
intermediate storage.

From a compute standpoint, many low-level operations are executed as dozens of small, memory-
bound kernels. This overhead becomes dominant on large graphs, even when the asymptotic com-
plexity aligns with a simple GCN. For example, in M2M2GCN [18], each edge triggers a small
MLP and a segmented softmax over a c-dimensional vector. These operations cannot be cast as
one large matrix–matrix multiply, so they incur per-edge kernel launches and intermediate result
synchronization, further increasing runtime and reducing GPU efficiency.

To quantify these costs, we benchmarked 13 representative GNN variants—each configured with the
same hidden dimension and number of layers on the Flickr dataset using an NVIDIA RTX A2000
GPU.
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Figure 2: memory and runtime analysis across different
GNN models for Flickr dataset.

As illustrated in Fig. 2, H2GCN, con-
sumes over 6× more GPU memory than
a vanilla GCN and incurs a 33× increase
in combined forward and backward time.
Moreover, memory footprint does not al-
ways predict execution time. BernNet uses
roughly one-third the memory of GAT yet
runs slower, owing to its intricate graph
operations (e.g., Kth-order filter calcula-
tion) and frequent GPU memory transac-
tions. These results underscore a funda-
mental trade-off between expressive power
and computational efficiency. These find-
ings underscore the need for architectures
that combine heterophilic modeling capac-
ity with practical computational efficiency.
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3 Preliminaries
Let G = (V,E) be an undirected graph with n = |V | nodes and m = |E| edges. Each node v ∈ V
has an associated feature vector xv ∈ Rdin , and we denote the node feature matrix as X ∈ Rn×din . The
graph structure is represented by an adjacency matrix A ∈ Rn×n, where Aij > 0 if (i, j) ∈ E, and
Aij = 0 otherwise. We primarily consider binary adjacency matrices (A ∈ {0, 1}n×n), though our
formulation generalizes to weighted graphs. Let D = diag(d1, d2, . . . , dn) denote the degree matrix
of G, where di =

∑n
j=1 Aij is the degree of node i. The normalized adjacency matrix with self-loops

is defined as Ã = D− 1
2 (A+ In)D

− 1
2 , where In is the n× n identity matrix. In semi-supervised

node classification, only a subset of nodes VL ⊂ V have known labels yv ∈ {1, 2, . . . , C}, where C
denotes the number of classes. The goal is to predict labels for all unlabeled nodes in V \ VL.

Message Passing and Multi-hop Propagation. GNNs operate on the principle of message passing,
where each node iteratively aggregates information from its neighborhood. The neighborhood N (v)
of a node v is defined as the set of nodes adjacent to v in G, i.e., N (v) = {u ∈ V | (v, u) ∈ E}.

The standard message passing framework can be formalized as follows. At each layer l, a node v
updates its representation by aggregating information from its immediate neighbors:

h(l)
v = UPDATE(l)

(
h(l−1)
v ,AGGREGATE(l)

({
h(l−1)
u : u ∈ N (v)

}))
(1)

where h
(l)
v ∈ Rdl is the representation of node v at layer l, with h

(0)
v = xv. The functions

AGGREGATE and UPDATE are typically parameterized by learnable weights and vary across
different GNN architectures. In matrix form, many GNN layers can be expressed as:

H(l) = σ
(
AH(l−1)W(l−1)

)
(2)

where H(l) ∈ Rn×dl is the matrix of node representations at layer l (with H(0) = X), W(l−1) ∈
Rdl−1×dl is a learnable weight matrix, σ is a non-linear activation function, and P ∈ Rn×n is a
propagation matrix derived from the graph structure. A is the normalized adjacency matrix Ã.

The standard message passing paradigm focuses on immediate neighbors (1-hop connectivity), but
multi-hop information is critical in heterophilic settings. We define the p-hop neighborhood of a node
v as:

N p(v) = {u ∈ V | dist(v, u) = p} (3)

where dist(v, u) is the length of the shortest path between nodes v and u. By convention, N 0(v) =
{v} (the node itself).

The p-hop connectivity in a graph can be represented by the p-th power of the adjacency matrix, Ap.
For an unweighted graph, the entry (Ap)ij counts the number of distinct walks of length p from node
i to node j. In particular, (Ap)ij > 0 if and only if there exists at least one walk of length p between
i and j. If (Ap)ij > 0, then j ∈ ∪p

q=0N q(i), meaning node j is reachable from node i via a walk of
length at most p. We adopt the convention that A0 = In, representing self-connections.

4 GAMMA: Gated Multi-hop Message Passing
We now introduce the Gated Multi-hop Message Passing (GAMMA) mechanism. GAMMA explicitly
addresses a fundamental yet unresolved limitation in current multi-hop GNNs: the inability to
adaptively modulate the non-uniform heterophilic patterns specific to each node when aggregating
neighborhood features from multiple hops.

Following prior work [1, 40], to leverage multi-hop neighborhoods, features from higher powers of
the adjacency matrix are explicitly computed. For a feature matrix X, the p-hop propagated features
can be expressed as ApX, where each row (ApX)i aggregates information from all nodes exactly
p hops away from node i. A multi-hop aggregation scheme formulates node representations by
concatenating features processed independently for each hop distance:

Zconcat =
K

∥
p=0

(
ApXW(p)

)
(4)
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Figure 3: Gated Multi-hop Message Passing

where W(p) ∈ Rdin×dout is a hop-specific weight matrix, and K is the maximum hop distance
considered. (Note: The resulting dimension of Zconcat will be N × (K + 1)dout if each ApXW(p) is
N × dout.)

We aim to avoid pitfalls associated with naive feature concatenation [1, 40, 37] due to several key
concerns. Primarily, feature concatenation can lead to parameter inefficiency and higher risk of
overfitting by drastically expanding the feature dimensionality fed into subsequent layers, demanding
more data and computational resources than potentially necessary. Secondly, it often introduces
significant information redundancy, as concatenated features from different hops might be related,
forcing the model to expand capacity on disentangling correlated signals rather than learning novel
patterns. Crucially, by naively concatenating feature vectors from multiple hops, the complex task
of distinguishing interactions and relative contributions among is entirely offloaded to downstream
general-purpose layers (like an MLP). This may be less effective than employing more sophisticated,
adaptive fusion mechanisms that can explicitly model and exploit these relationships earlier and more
directly, ultimately aiming for a robust representation learning process.

To overcome these limitations, we adopt inspiration from the observation that Capsule Networks [32]
dynamically link spatially local features to global object representations. Specifically, we treat each
p-hop aggregation as a constituent part of the full node embedding. Then, we measure how well each
part’s embedding aligns (via dot product) with the node’s evolving feature (i.e., final representation),
thereby adaptively integrating only those hops whose local aggregated features agree with the overall
representation.

Formally, let {Ĥ(p)
i }Kp=0 denote normalized hop-specific embeddings for node i at hop p, each derived

from multi-hop propagation, Ap. These embeddings are first normalized via L2-normalization to
mitigate scale discrepancies among hops:

Ĥ
(p)
i =

H
(p)
i

∥H(p)
i ∥2

, p = 0, . . . ,K. (5)

These normalized embeddings are then stacked into a unified tensor representation, Ui ∈ R(K+1)×dout ,
to facilitate subsequent iterative gating computations.

The core of GAMMA is an iterative gating procedure, driven by a set of gating logits bi ∈ RK+1,
initialized to zero. Each iteration t, refines these logits, which encode the node’s confidence in each
hop’s contribution to its final representation. Specifically, at iteration t, we compute α

(t)
i , which is

the hop-wise gating coefficient for node i through a softmax operation:

α
(t)
i = softmax

(
b
(t)
i

)
, α

(t)
i,p =

exp(b
(t)
i,p)∑K

q=0 exp(b
(t)
i,q)

. (6)

These gating coefficients determine how hop-specific embeddings are combined into an intermediate
representation s

(t)
i :

s
(t)
i =

K∑
p=0

α
(t)
i,pĤ

(p)
i . (7)
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To maintain meaningful vector magnitudes and preserve directional information, we employ the
squash function [32], to transform s

(t)
i into a normalized representation v

(t)
i :

v
(t)
i =

∥s(t)i ∥2

1 + ∥s(t)i ∥2
s
(t)
i

∥s(t)i ∥
. (8)

The key improvement that enables distinguishing features from different hops, is the iterative update
of gating logits based on the concept of agreement, quantified as the inner product between each
hop-specific embedding and the evolving node representation:

b
(t+1)
i,p = b

(t)
i,p + Ĥ

(p)
i · v(t)

i . (9)

Intuitively, hops whose embeddings consistently align with the emerging consensus (as represented
by v

(t)
i ) experience increased gating logits and thus higher gating coefficients, reinforcing their

influence. Conversely, hops providing contradictory or noisy signals are progressively suppressed.
This is illustrated in Fig. 3(b), where the aggregated embedding from the second hop has the strongest
agreement with the target node i (Figure 3(a)). Consequently, the dot product Ĥ(2)

i · v(t)
i yields a

higher value, which increases the corresponding gating logit b(t+1)
i,2 for the next iteration, thereby

intensifying the influence of the second hop’s features in the final representation.

After R routing iterations, we finalize the node representation: Hi = v
(R)
i +b, where b ∈ Rdout is an

optional learnable bias. The number of routing iterations is a hyperparameter, with 2 or 3 iterations
typically sufficient in practice (see Appendix A).

It is crucial to distinguish between hop-specific feature aggregation and node-specific gating. The
initial multi-hop propagation (H(p)

i = (ApXW)i) generates hop-specific embeddings that aggregate
features globally from all nodes at distance p. However, the gating mechanism operates node-
specifically: each node i independently computes its own routing coefficients α

(t)
i,p based on the

agreement between its evolving representation v
(t)
i and each hop’s embedding Ĥ

(p)
i . These coef-

ficients are unique to each node and recomputed during every forward pass (including inference
on unseen graphs), enabling adaptive, instance-driven weighting of multi-hop information without
gradient updates. This distinguishes GAMMA from methods like GPR-GNN [5] where coefficients
are learned once globally and applied uniformly to all nodes.

From a practical computational viewpoint, GAMMA offers substantial benefits over concatenation-
based multi-hop methods. Since GAMMA dynamically selects and aggregates hop-specific informa-
tion without explicitly expanding the feature space, it significantly reduces memory consumption and
computational overhead. Furthermore, by maintaining a single shared projection matrix across hops,
GAMMA leverages efficient sparse-dense matrix multiplications, substantially improving training
scalability and inference efficiency. Moreover, During inference on an unseen graph, the routing
loop re-computes the gating coefficients αi,p from scratch, enabling GAMMA to re-calibrate hop
importance for heterophily patterns specific to each node’s local neighborhood without any gradient
updates.

Empirically, the adaptive nature of the GAMMA routing mechanism provides unparalleled flexibility,
allowing each node to selectively amplify structurally informative signals from distinct hop distances,
based on the nuanced local context. This flexibility not only enhances performance on highly
heterophilic datasets but also robustly generalizes across diverse graph structures, significantly
outperforming existing multi-hop approaches, as demonstrated extensively in our experimental
results. For more details about GAMMA and the algorithm pseudocode, refer to Appendix C and
Algorithm 1.

5 Weight Sharing Across Hops
The iterative gating mechanism in GAMMA compares hop-wise messages with an inner product.
Such a comparison is reliable only if all hop embeddings reside in a common and coherent feature
space. Using independent, learnable projection matrices for each hop, as done in some multi-hop
architectures [1], would map features to potentially unrelated latent spaces, rendering their direct
comparison via inner products ill-defined and potentially undermining the gating process.

To address this, GAMMA employs a shared linear transformation for all hop distances. Initial
node features X are first projected into a common dout-dimensional space using a single weight
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matrix W ∈ Rdin×dout . This projected representation, Hproj = XW, then serves as the basis for
generating representations for all considered hop distances:

H(p) = ApHproj, p = 0, . . . ,K, (8)

where A0 = In (the identity matrix, representing the node’s own projected features), and H(p)

denotes the unscaled features aggregated from the p-hop neighborhood. By utilizing a single W,
we ensure that all H(p) are expressed in the same coordinate system, making their subsequent
normalization and dot-product-based comparisons in the gating mechanism.

This weight-sharing strategy reduces the number of learnable parameters compared to models that use
separate matrices W(p) for each hop. Instead of (K +1)× din × dout parameters for transformations,
GAMMA uses only din × dout. This reduction lessens the risk of overfitting, especially in semi-
supervised settings with limited labeled data, and contributes to tighter generalization bounds. Also,
fewer parameters naturally lead to lower memory requirements for storing the model. Furthermore,
computations involving a single shared matrix can be more optimized.

While a single shared projection W ensures a consistent feature space, it might be too restrictive,
lacking the flexibility to emphasize or de-emphasize certain feature dimensions differently for
messages originating from various hop distances. To re-introduce a degree of hop-specific adaptability
without fracturing the shared geometric space, GAMMA incorporates learnable channel-wise
scaling factors γp ∈ Rdout for each hop p. After obtaining the propagated features H(p) using the
shared projection, each is modulated as follows:

H
(p)
scaled = H(p) ⊙ γp, p = 0, . . . ,K, (9)

where ⊙ denotes element-wise multiplication. These scaled representations H
(p)
scaled are then L2-

normalized to produce Ĥ(p) for the gating procedure.
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Figure 4: weight sharing.

This scaling mechanism allows the model to learn the
global importance of different feature channels at differ-
ent hop distances. For instance, certain features might be
highly informative when sourced from 1-hop neighbors
but less so from 3-hop neighbors, or vice-versa. The scal-
ing factors γp enable GAMMA to adapt to such patterns.
Importantly, since scaling merely stretches or shrinks ex-
isting feature dimensions, it preserves the integrity of the
common coordinate system, ensuring that the inner prod-
ucts used in the routing stage remain meaningful. The
parameter overhead for these scaling factors is minimal,
adding only (K + 1) × dout parameters, which is negli-
gible compared to using full hop-specific transformation
matrices.

However, it is crucial to distinguish the global and local heterophilic patterns in a graph. At the
global level, each hop’s features are scaled by the learnable channel-wise factors γp, which adjust the
overall importance of information from hop p across the entire graph. In contrast, local adaptation
to non-uniform heterophilic patterns relies on GAMMA’s dynamic gating, where each node i,
the coefficients αi,p (softmax over logits bi,p) are not fixed but recomputed iteratively during each
forward pass. These logits are updated based on the dot-product agreement between node i’s current
embedding and the normalized messages from each hop, yielding per-instance, activation-driven
weights. By differentiating global scaling from node-specific gating, GAMMA can both prioritize
broadly informative hop distances and adapt on-the-fly to unseen local heterophily patterns, without
relying on static, learned weights for node-specific preferences.

6 Evaluation
Configuration and setup. We evaluate GAMMA on the semi-supervised node classification task
across a diverse set of benchmark datasets, encompassing both homophilic and heterophilic graphs,
with detailed results presented in Table 1. Our experiments demonstrate that GAMMA achieves
competitive performance across these varied graph structures, showcasing its adaptability. All models
were implemented in Python using PyTorch Geometric [7]. Experiments were conducted on a
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desktop machine equipped with an NVIDIA RTX A2000 GPU (12GB VRAM) [27]. CUDA 12.8
facilitated GPU acceleration and NVIDIA Nsight Compute CLI [28] was employed for profiling and
computational performance evaluations such as memory consumptions and runtime.
Baselines. To benchmark GAMMA, we compare it against a comprehensive suite of baselines
representing key strategies in graph representation learning, especially for heterophilic contexts.
This selection includes Standard GNNs and Foundational Models (MLP [12], GCN [14], GAT [34],
SGC [36]), which serve to ground performance and highlight the challenges heterophily poses
to conventional message-passing paradigms. We also incorporate Spectral Graph Filters (GCN-
II [4], GPRGNN [5], BernNet [11]), chosen for their design leveraging graph signal processing to
capture the mixed-frequency signals often characteristic of heterophilic structures. Furthermore,
Methods Utilizing High-Order Neighbors (MixHop [1], H2GCN [40], GCN-JK [37], GAT-JK [37])
are included, as they aim to discover informative, potentially distant, same-class nodes by expanding
the receptive field beyond immediate, possibly misleading, connections. Finally, Discriminative
Message Passing Techniques (M2MGNN [18]) represent approaches that enable more selective and
nuanced aggregation from diverse or signed neighborhood information, crucial when local context is
not uniformly homophilous. This diverse selection provides a robust testbed for evaluating GAMMA’s
adaptability and effectiveness across the spectrum of graph structures.
Training recipe. For a fair and rigorous comparison of both predictive accuracy and computational
demands, all models, including baselines, were configured with a consistent architecture: two GNN
layers and a fixed hidden dimension size of 32. Hyperparameters for each model were optimized
via a grid search over learning rates in {0.05, 0.01, 0.002} and dropout rates ∈ {0.0, 0.5}. Across all
datasets and splits, models were trained for a fixed 500 epochs. We report the test accuracy achieved
using the hyperparameter configuration that yielded the highest performance on a held-out validation
set for each dataset and model combination.

For robust evaluation, we adhere to standardized data splitting procedures. Specifically, for the
heterophilic benchmark datasets, we utilize the 10 fixed train/validation/test splits [31]. These splits
allocate 50% of nodes for training, 25% for validation, and 25% for testing, reflecting a common
practice of using a substantial training set for non-homophilous graph learning evaluations [40, 29,
19, 38]. For the homophilic datasets, we also employ 10 distinct random splits, following the setup
in [40], with 48% of nodes for training, 32% for validation, and 20% for testing. Each model is
trained once per split, and we report the mean test performance metrics along with their standard
deviations across these 10 splits, consistent with the evaluation methodology in [31].

Table 1: Node classification accuracy (%) on homophilic and heterophilic benchmarks.
Homophilic Graphs Heterophilic Graphs

Cora CiteSeer PubMed Texas Wisconsin Actor Squirrel Chameleon Cornell

# Nodes 2,708 3,327 19,717 183 251 7,600 5,201 2,277 183
# Edges 5,429 4,732 44,338 309 499 30,019 217,073 36,101 280

Hom. ratio 0.81 0.74 0.80 0.11 0.21 0.22 0.22 0.23 0.30

MLP [12] 75.64± 1.85 73.00± 1.48 86.55± 0.59 80.26± 3.58 84.71± 2.11 35.37± 0.87 32.16± 1.16 49.78± 2.22 77.89± 5.16
GCN [14] 87.27± 1.24 76.06± 1.13 87.38± 0.37 50.26± 3.21 45.49± 6.97 27.18± 0.98 25.13± 1.26 29.36± 2.03 47.89± 7.88
SGC [36] 36.91± 11.87 68.25± 4.80 76.19± 3.22 54.21± 4.88 44.51± 4.81 26.14± 1.20 20.66± 1.63 26.43± 1.84 43.16± 6.47

GCN-II [4] 83.96± 2.24 74.15± 1.81 88.86± 0.47 76.32± 8.89 81.96± 2.45 35.18± 1.34 31.86± 1.58 49.61± 1.48 65.26± 7.96
GCN-JK [37] 83.13± 1.13 69.61± 1.64 86.94± 0.63 39.47± 6.34 42.16± 6.52 25.94± 0.99 22.56± 1.12 29.17± 2.30 50.00± 8.57
GAT-JK [37] 84.33± 1.05 71.74± 1.95 85.56± 0.57 41.58± 5.24 46.67± 8.03 26.68± 0.82 24.67± 1.25 36.58± 2.53 50.53± 8.55
H2GCN [40] 87.75± 0.88 75.95± 1.24 89.44± 0.46 86.58± 4.47 85.88± 4.19 35.33± 1.06 38.36± 1.59 59.69± 1.43 78.16± 6.97

GAT [34] 85.34± 0.88 73.19± 1.79 87.13± 0.54 43.68± 5.79 44.12± 6.34 26.36± 1.11 25.02± 1.36 34.87± 2.79 46.05± 8.43
MixHop [1] 85.93± 1.09 74.99± 1.81 89.06± 0.48 84.21± 6.6 85.69± 3.93 32.70± 1.23 34.61± 2.47 52.54± 2.25 74.47± 4.71
BernNet [11] 87.33± 1.20 76.42± 1.57 86.84± 0.52 79.47± 3.07 81.57± 4.31 33.78± 1.72 33.43± 1.43 49.14± 1.19 73.95± 7.58
GPRGNN [5] 87.72± 0.88 75.23± 1.69 88.26± 0.49 61.58± 8.66 78.24± 3.09 33.62± 0.92 28.29± 1.26 34.43± 2.14 62.37± 5.77

M2MGNN [18] 83.65± 1.88 70.70± 2.47 88.62± 0.66 84.47± 4.77 87.06± 2.00 33.89± 1.14 33.89± 4.01 58.14± 2.14 76.84± 4.82
GAMMA 87.42± 1.01 75.49± 1.67 89.62± 0.43 87.37± 3.68 86.27± 4.21 35.59± 1.29 36.20± 1.01 51.16± 2.22 78.68± 3.42

Note: Values are colored according to their ranking: best in green, second-best in blue, and third-best in red.

Performance on Homophilic Benchmarks. On standard homophilic benchmarks, GAMMA
demonstrates consistently strong and competitive performance, validating its robustness even when
the homophily assumption largely holds. As shown in Table 1, on PubMed, GAMMA achieves
the best accuracy among all compared methods with 89.62± 0.43%. For Cora, GAMMA obtains
87.42±1.01%, performing comparably to GPRGNN (87.72±0.88%) and H2GCN (87.75±0.88%).
These results indicate that GAMMA’s adaptive multi-hop gating mechanism does not impede its
ability to leverage strong homophilous signals, maintaining high efficacy on datasets where traditional
GNNs typically excel.
Performance on Heterophilic Benchmarks. GAMMA showcases its strength and adaptability
on the more challenging heterophilic datasets. Across the six heterophilic benchmarks, GAMMA
consistently ranks among the top-performing models, outperforming many specialized heterophilic
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GNNs and standard GNNs, which often struggle in these settings. Specifically, GAMMA achieves
the best performance on three of the six heterophilic datasets. On Texas, it surpasses H2GCN
and M2MGNN. On the Actor dataset, GAMMA leads with 35.59 ± 1.29%, ahead of MLP and
H2GCN and on Cornell, GAMMA again achieves the top accuracy of 78.68± 3.42%, outperforming
H2GCN and MLP. On the remaining heterophilic datasets, GAMMA also demonstrates robust and
highly competitive results. For Wisconsin GAMMA appears as the second-best, closely following
M2MGNN (87.06± 2.00%) and outperforming several other specialized methods like H2GCN and
MixHop.

These strong performances across datasets with varying low homophily ratios (from 0.11 for Texas to
0.30 for Cornell). The results suggest that GAMMA’s node-specific adaptive gating of multi-hop in-
formation is particularly beneficial for navigating the complex neighborhood structures characteristic
of heterophilic graphs, allowing it to match or exceed the performance of methods that rely on fixed
higher-order aggregations (MixHop) or more complex heterophily-specific designs (BernNet and
M2MGNN). The competitive results on both homophilic and heterophilic graphs strongly support
GAMMA’s design as a homophily-agnostic GNN.
Performance on Larger Heterophilic Benchmarks. To address scalability concerns and demon-
strate GAMMA’s effectiveness on larger graphs, we evaluate our method on seven large heterophilic
benchmarks. Table 2 presents results on datasets ranging from tens of thousands to millions of nodes.
Notably, many state-of-the-art methods encounter Out-Of-Memory (OOM) errors even on an NVIDIA
A100 GPU with 80GB VRAM, particularly on ogbn-products (2.4M nodes, 61M edges), due to
architectural choices such as feature concatenation (H2GCN, MixHop, JK-Nets) or complex per-edge
operations (M2MGNN) that create prohibitively large intermediate tensors. GAMMA addresses these
limitations through its weight-sharing strategy and dynamic gating mechanism, enabling it to scale
effectively while maintaining competitive accuracy. GAMMA achieves state-of-the-art or highly
competitive performance on 6 out of 7 large-scale datasets, demonstrating that efficient architectural
design does not compromise effectiveness. Across the complete benchmark suite of 16 datasets
spanning both small and large-scale graphs, GAMMA achieves the best overall performance with
an average rank of 2.06, compared to H2GCN (3.71) and MixHop (3.87), confirming its effectiveness
and scalability for heterophilic graph learning.

Table 2: Node classification accuracy (%) on large heterophilic benchmarks. OOM indicates Out-Of-
Memory errors.

ogbn-arxiv roman-empire ogbn-products minesweeper amazon-ratings amazon-photos tolokers
# Nodes 169,343 22,662 2,449,029 10,000 24,492 7,650 11,758
# Edges 1,166,243 32,927 61,859,140 39,402 186,100 238,162 519,000

MLP [12] 47.34± 0.09 65.37± 0.58 43.20± 0.01 79.48± 0.21 38.35± 0.20 48.73± 1.80 78.16± 0.00
GCN [14] 64.91± 0.26 54.16± 0.28 71.31± 0.16 80.31± 0.24 42.12± 0.29 52.14± 1.50 78.76± 0.17
SGC [36] 63.47± 0.16 61.20± 0.65 OOM 80.05± 0.03 41.61± 0.72 57.97± 0.52 78.56± 0.19
GCN-II [4] 61.96± 0.42 64.96± 0.38 61.08± 0.18 82.80± 0.35 47.20± 0.55 94.10± 0.25 79.80± 0.30
GCN-JK [37] 70.19± 0.11 62.18± 0.91 69.46± 0.33 85.15± 0.42 48.77± 0.37 95.28± 0.05 81.23± 0.26
GAT-JK [37] 70.75± 0.19 70.00± 0.70 OOM 85.65± 0.34 50.84± 0.52 95.71± 0.11 81.31± 0.48
H2GCN [40] OOM 75.89± 0.55 OOM 83.31± 0.65 42.90± 0.38 84.95± 0.38 79.39± 0.42
GAT [34] 70.01± 0.09 74.50± 0.45 OOM 81.52± 0.26 48.89± 0.61 95.56± 0.15 78.63± 0.06
MixHop [1] 70.27± 0.14 82.20± 0.31 OOM 84.88± 0.45 50.98± 0.30 96.34± 0.30 81.03± 0.70
BernNet [11] 63.15± 0.13 66.27± 0.35 OOM 80.00± 0.07 40.90± 0.09 62.34± 7.02 78.16± 0.00
GPRGNN [5] 67.66± 0.07 69.60± 0.40 73.26± 0.65 80.36± 0.19 43.44± 0.13 79.54± 0.39 78.36± 0.10
M2MGNN [18] 72.52± 0.10 80.81± 0.70 OOM 85.83± 0.25 50.57± 0.29 95.73± 0.25 80.66± 0.47

GAMMA 71.81± 0.19 81.37± 0.25 72.61± 0.04 87.58± 0.25 49.07± 0.65 96.28± 0.11 82.59± 0.41

Note: Values are colored according to their ranking: best in green, second-best in blue, and third-best in red.

Computational efficiency. Beyond predictive accuracy, the practical utility of a GNN model heavily
depends on its computational efficiency, encompassing both execution latency and memory footprint.
We benchmarked GAMMA against various baselines, measuring forward pass time, backward pass
time, and total GPU memory usage on the Flickr dataset. The results, shown on the right-hand
side of Fig. 5, underscore GAMMA’s efficiency profile. GAMMA operates with a total execution
time (backward + forward pass) of 23.17 ms and a memory footprint of 480.60 MB. This latency is
competitive with the simplest architectures such as GCN, which records 15.24 ms, and GPRGNN at
18.75 ms. Critically, GAMMA demonstrates substantial speedups over several complex models: it
runs approximately 20× faster than H2GCN, over 7.4× faster than M2MGNN, and nearly 5× faster
than MixHop. In terms of memory, GAMMA’s 480.60 MB usage is significantly efficient, consuming
approximately 12.1× less memory than M2MGNN, over 6.1× less than GATJK, and about 4.1×
less than H2GCN (1993.90 MB).
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PubMed Flickr

Figure 5: GAMMA efficiency comparison across various GNNs on Flickr and PubMed datasets.

GAMMA’s computational efficiency, despite its capacity for adaptive multi-hop information pro-
cessing, stems from several core architectural decisions. Firstly, the shared linear transformation
applied once to input features (XW) ensures parameter efficiency for the primary feature projection,
as discussed in Section 5. Subsequent multi-hop propagations (Ap(XW)) operate on these already
transformed, fixed-dimension features. This is a key distinction from models like MixHop, which
concatenates outputs from different powers of the adjacency matrix, leading to a larger feature
dimension for subsequent layers and higher parameter counts as distinct transformations were applied
per hop. Secondly, GAMMA avoids explicit feature concatenation for integrating multi-hop
information. Many multi-hop architectures, such as H2GCN (which concatenates features from
1-hop and 2-hop paths, and across iterations) and MixHop, expand the feature dimensionality before a
which in turn requires larger memory transactions. This increase in output feature dimension directly
results in larger intermediate tensors and more expensive matrix operations. In contrast, GAMMA’s
gating mechanism computes a weighted sum of hop-specific embeddings and merges them into
a unified output vector, each preserving the target output feature dimension, thus avoiding heavy
memory and computational requirements.

The lightweight iterative gating mechanism further contributes to GAMMA’s efficiency. Each
iteration of the gating mechanism involves GPU friendly and highly parallel operations like softmax,
element-wise products, and sums primarily on tensors of shape [#Nodes, #hops], with a low number of
iterations (empirically 1 to 3). These operations are computationally less demanding than, for example,
the per-edge multi-layer perceptron and segmented softmax operations within M2MGNN’s layers, or
the per-edge attention coefficient calculations in GAT and its variants. While GAMMA computes
embeddings from multiple hops using standard message passing, the subsequent aggregation via
gating is more efficient than learning complex, global filter coefficients for each feature as in some
spectral methods like BernNet, which involves K propagation steps for its polynomial filters, or
handling large feature dimensions. Consequently, GAMMA offers a compelling balance between
accuracy across diverse graphs and the practical computational efficiency required for real-world
heterophilic datasets.

7 Conclusion
In this paper, we introduced GAMMA, a homophily-agnostic GNN architecture that effectively
handles the non-uniform heterophilic patterns prevalent in real-world graphs. By employing a
lightweight iterative gating mechanism and an efficient weight-sharing scheme, GAMMA adaptively
leverages multi-hop neighborhood information based on node-specific structural patterns. Our
experiments across diverse benchmarks demonstrate that GAMMA matches or exceeds state-of-the-
art accuracy while achieving up to 20× faster inference and substantially lower memory consumption,
making heterophilic graph learning practical on commodity hardware. Despite these advances,
limitations remain for future exploration. GAMMA’s current fixed routing iteration count may
be suboptimal for nodes with varying neighborhood complexities, and extremely large graphs
may require further optimizations to the gating mechanism. Additionally, while our dot-product
agreement measure works well in practice, more sophisticated routing strategies might better capture
particularly complex heterophilic relationships. Nevertheless, GAMMA challenges the assumption
that handling heterophily necessitates complex architectures, providing a practical solution that
balances adaptability, performance, and computational efficiency for diverse graph learning tasks.
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Figure 6: Iterative gating mechanism performance with different number of iterations

A Ablation Study on Number of Routing Iterations in the Gating Mechanism

To understand the impact of the iterative refinement process within the GAMMA layer, we conduct
an ablation study on the number of iterations (R in Algorithm 1, line 10). This parameter controls
how many times each node refines its assessment of the relevance of aggregated information from
its k-hop neighbors by updating the gating logits b based on the agreement between hop-specific
embeddings and the evolving node representation v. We vary number of iterations from 1 to 10 and
report the mean accuracy and standard deviation over 10 splits for each dataset. The detailed results
of this study are presented in Fig. 6, allowing us to observe how the performance of GAMMA changes
as nodes are given more steps to dynamically determine the optimal mix of multi-hop information.

On the homophilic datasets (Cora, CiteSeer, and PubMed), the performance of GAMMA demonstrates
a general trend of either peaking or stabilizing with a relatively small number of routing iterations. For
instance, on Cora, accuracy improves from 87.02 at 1 iteration to a peak of 87.13 at 5 iterations, after
which it sees a marginal decline. PubMed also shows robustness, with performance quickly reaching
near-optimal levels (e.g., 89.20 at 2 iterations and 89.21 at 10 iterations), indicating that a few
iterations are sufficient to establish effective routing coefficients. CiteSeer exhibits slight fluctuations
but generally performs well across different iteration counts, achieving 75.16 at 1 iteration and 75.05
at 10 iterations. This suggests that for graphs where homophily is prevalent, the initial agreement
scores are often strong, and the iterative process rapidly converges to an effective combination of
hop information, primarily leveraging local neighborhood signals. While additional iterations do not
significantly degrade performance, they offer diminishing returns, implying that the model quickly
identifies the most relevant, often nearby, hops.

In contrast, the behavior on heterophilic datasets is more varied, underscoring the diverse nature of
information distribution in such graphs. Some heterophilic datasets like Chameleon and Wisconsin
achieve their peak performance with very few iterations (Chameleon: 48.82 at 2 iterations; Wisconsin:
86.67 at 2 iterations), with performance tending to decrease with more iterations. This pattern
suggests that for these specific graphs, the initial routing based on agreement quickly identifies the
most discriminative hop information, and further iterations might risk incorporating noisy or less
relevant signals from more distant or dissimilar neighborhoods. However, other heterophilic datasets
such as Actor and Cornell benefit from a greater number of iterations. Actor’s accuracy gradually
increases, peaking at 36.09 with 7 iterations, while Cornell peaks at 80.79 with 6 iterations. This
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indicates that for these graphs, the iterative refinement process is crucial for dynamically adjusting
the weights of different k-hop neighborhoods, allowing the model to progressively focus on more
informative, potentially non-obvious, hop distances that are critical for capturing heterophilic patterns.
The optimal number of iterations thus appears to be dataset-dependent, reflecting the unique structural
characteristics and the complexity of heterophily within each graph.

B Impact of Dynamic Gating Mechanism Through Empirical Study

To demonstrate the contribution of GAMMA’s node-specific dynamic gating mechanism, we conduct
an ablation study comparing two configurations: (1) Without Gating: uniform hop weights for
all nodes (i.e., αi,p equal across all hops p for each node i), while retaining the learnable channel-
wise scaling factors γp that operate globally, and (2) With Gating: GAMMA’s full iterative gating
mechanism that adaptively computes node-specific hop coefficients αi,p based on agreement scores.

Table 3 presents results on six heterophilic datasets aggregating information from different hop
combinations. The results demonstrate that dynamic gating consistently outperforms uniform hop
weighting across all datasets, with improvements ranging from 2-8% depending on the dataset. These
gains stem from GAMMA’s ability to adaptively capture node-specific multi-hop homophily patterns.

Table 3: Ablation study: Impact of gating mechanism on node classification accuracy (%).
Cornell Texas Wisconsin Chameleon Actor Squirrel

Hop Config. W/o With ∆ W/o With ∆ W/o With ∆ W/o With ∆ W/o With ∆ W/o With ∆

1-2 hop 75.31 78.68 +3.37 83.25 87.37 +4.12 81.40 86.27 +4.87 44.79 51.16 +6.37 30.72 35.59 +4.87 28.33 36.20 +7.87
1-3 hop 73.51 77.11 +3.60 82.57 86.47 +3.90 79.02 84.12 +5.10 42.29 51.14 +8.85 30.29 36.06 +5.77 29.28 35.43 +6.15
1-4 hop 75.99 79.21 +3.22 81.86 86.21 +4.35 80.06 84.71 +4.65 42.40 50.87 +8.47 27.25 34.90 +7.65 27.42 35.52 +8.10

Note: "W/o" = without dynamic gating (uniform hop weights with global scaling γp). "With" = GAMMA’s full dynamic gating. ∆ shows
improvement from adding dynamic gating.

Why Dynamic Gating Matters. As demonstrated in Section 2, heterophily varies both across
nodes and hop distances. For instance, in the Chameleon dataset, we observe dramatically different
multi-hop homophily patterns across nodes. Chameleon exhibits only 20.7% pattern consistency,
meaning just 20.7% of nodes share similar multi-hop homophily trajectories, while most show diverse,
complex patterns. This explains why Chameleon sees the largest performance gains (6-7%) from
dynamic gating. In contrast, Cornell displays 65.3% pattern dominance, where the majority of nodes
share similar multi-hop homophily, resulting in smaller but still meaningful improvements (2-3%).

Unlike methods with global coefficients (e.g., GPR-GNN), GAMMA’s dynamic gating operates at
both training and inference time. During inference, the routing loop recomputes gating coefficients
αi,p from scratch for each node, enabling GAMMA to adapt to unseen heterophily patterns in the
local neighborhood without any gradient updates. This architectural design separates global pattern
learning (via γp learned during training) from local pattern identification (via dynamic αi,p computed
during each forward pass).

C GAMMA Pseudocode and Implementation Details

Algorithm Explanation and GPU-Efficient Computation. Algorithm 1 provides a concise
overview of the forward pass in a GAMMA layer. In Lines 1–4, we perform a single shared
linear transformation on the input X and then apply K-hop propagations via standard sparse-dense
matrix multiplication (spmm), which is highly optimized for modern GPUs. Unlike multi-hop meth-
ods relying on explicit feature concatenation, GAMMA keeps each hop representation H(p) in the
same output dimension dout and scales it channel-wise in Lines 6–7. This uniform dimensionality
avoids blowing up tensor shapes in memory and reduces the number of large intermediate operations
typically seen in concatenation-based schemes (e.g., MixHop).

Within each node’s local routing loop (Lines 10–17), the dot products in Line 12 act as a similarity
measure between a node’s evolving summary vector vi and each normalized hop embedding Ĥ

(p)
i .

These dot products are very lightweight on a GPU, as they operate on small vectors with shape
[dout] and then update a softmax distribution of size K+1. Importantly, these per-node operations
can be mapped to GPU kernels that rely on fully on-chip memory, eliminating large-scale memory
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Algorithm 1 GAMMA Layer Forward Pass

Require: Node features X ∈ Rn×din , adjacency matrix A ∈ Rn×n, powers K, routing iterations R, scaling
parameters γ0, . . . ,γK , weight matrix W ∈ Rdin×dout , bias b ∈ Rdout

Ensure: Node representations V ∈ Rn×dout

1: H← XW ▷ Shared linear transformation
2: H(0) ← H ▷ 0-hop representation is the node’s own features
3: for p = 1 to K do
4: H(p) ← AH(p−1) ▷ p-hop propagation via sparse-dense matmul
5: for p = 0 to K do
6: H(p) ← H(p) ⊙ γp ▷ Apply hop-specific scaling
7: Ĥ(p) ← normalize

(
H(p)

)
▷ Node-wise L2 normalization

8: for each node i ∈ V do
9: bi ← 0 ∈ RK+1 ▷ Initialize gating logits

10: for t = 1 to R do
11: αi ← softmax

(
bi

)
▷ Compute gating coefficients

12: si ←
∑K

p=0 αi,p Ĥ
(p)
i ▷ Weighted sum of hop representations

13: vi ← squash
(
si
)

▷ Apply “squash” for normalization
14: for p = 0 to K do
15: bi,p ← bi,p + Ĥ

(p)
i · vi ▷ Logit update via dot product (agreement)

16: vi ← vi + b ▷ Optional bias for final representation
17: return V = {vi}i∈V ▷ Output node representations

transactions. By contrast, concatenation-based methods generate large expanded embeddings (often
dimension (K+1) dout), which can lead to memory-bound kernels and slower performance.

Note that in Lines 1–7, we first apply the shared linear transformation H = XW, then iteratively
compute p-hop embeddings by multiplying from right to left:

H(p) = AH(p−1) ⇐⇒ H(p) = Ap (XW). (10)

This step-by-step approach avoids explicitly forming Ap at once and reduces repeated large-scale
multiplications. After channel-wise scaling and normalization (Lines 6–7), each node’s per-hop
features remain in dimension dout, rather than expanding to (K+1) dout as in feature concatenation.

Within the routing loop (Lines 10–16), the dot products in Line 12 act as a localized “agreement”
between a node’s evolving representation and each hop’s normalized embedding. These computations
are inexpensive on GPUs, as each node handles only small dout-dimensional vectors. Crucially, by
maintaining a single vector vi per node and updating logits bi in place, we avoid memory-bound
concatenations. Consequently, relevant hop data remain on-chip, allowing the algorithm to leverage
GPU-friendly sparse-dense kernels efficiently. This design leads to less overhead and lower peak
memory usage, as observed empirically in Section 6.

D Related Work

The foundational success of early Graph Neural Networks (GNNs), such as Graph Convolutional Net-
works (GCN) [14] and Graph Attention Networks (GAT) [34], has been predominantly demonstrated
on homophilic graphs, where connected nodes tend to share similar features and labels. Their inherent
message-passing mechanisms act as low-pass filters, effectively smoothing representations within
local neighborhoods, which is beneficial under homophily [25]. However, this very property leads
to suboptimal performance on heterophilic graphs, where adjacent nodes often belong to different
classes [40, 39]. This discrepancy has catalyzed a significant body of research focused on developing
GNNs tailored for, or robust to, heterophily. These approaches can be broadly categorized.

Standard GNNs and Foundational Models. Beyond GCN and GAT, other foundational models
highlight the challenges of heterophily. Simplified Graph Convolutions (SGC) [36] streamline GCN
by removing non-linearities and collapsing multiple layers into a single linear transformation. While
exceptionally efficient due to its pre-computation of K-hop features, SGC’s aggressive smoothing
makes it highly susceptible to performance degradation on heterophilic graphs where dissimilar
neighbors are prevalent. Interestingly, Multilayer Perceptrons (MLP) [12], which entirely disregard
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graph structure and operate solely on node features, sometimes surprisingly outperform standard
GNNs on highly heterophilic datasets (see Table 1). This phenomenon underscores the detrimental
effect of inappropriate message passing in heterophilic settings, where aggregating from misleading
local connections can be worse than ignoring them altogether. While these models offer high
computational efficiency, their inherent homophily bias or complete disregard for structure makes
them ill-suited for effectively leveraging the complex relational information in heterophilic graphs.

Extending Receptive Fields: Multi-hop and Jumping Knowledge Architectures. Recognizing
that informative similar-class nodes in heterophilic graphs might reside beyond immediate neigh-
borhoods, several methods explicitly incorporate multi-hop information. MixHop [1] enables GNN
layers to learn from linear combinations of feature representations from neighbors at various hop
distances (k=0,1,2,. . . ) by repeatedly multiplying features with powers of the (normalized) adjacency
matrix and concatenating their transformed versions. This allows the model to directly access infor-
mation from different neighborhood ranges. While MixHop demonstrates the utility of multi-hop
features for heterophily, it relies on feature concatenation. This strategy leads to a linear increase in
feature dimensionality and parameters with the number of hops considered, significantly increasing
computational and memory costs, as shown in our analysis (Figure 2). Furthermore, the mixing of
hop information in MixHop is typically global, not adapted per node, limiting its ability to capture
node-specific heterophily patterns.

Jumping Knowledge Networks (JK-Nets) [37], applicable to models like GCN-JK and GAT-JK, offer
a more flexible approach to leverage multi-scale information. JK-Nets aggregate representations from
all previous layers (effectively different neighborhood radii) for each node at the final layer, using
mechanisms like concatenation, max-pooling, or LSTM-attention to combine them. This allows
nodes to adaptively select the relevant neighborhood range. However, the selection mechanism
in JK-Nets is primarily focused on the depth of the GNN, and it allows differential influence of
k-hop information. The combination strategy, while adaptive, might still mix features from different
semantic spaces if distinct transformations are used per layer before aggregation, potentially leading
to information redundancy or dilution.

H2GCN [40] specifically targets heterophily by incorporating three key design principles: (i) sepa-
rating the representation of the ego-node from its aggregated neighbors to prevent feature dilution,
(ii) explicitly including 2-hop neighbors to reach potentially more similar nodes, and (iii) com-
bining intermediate representations from different layers to preserve a spectrum of neighborhood
information. H2GCN’s strength lies in its tailored design for heterophily, showing strong empirical
results. However, its architecture is somewhat manually crafted with a fixed inclusion of specific hop
distances (1-hop and 2-hop), and the concatenation of features from these hops and across layers
leads to substantial increases in memory usage and computational load. Our analysis (Figure 2 in the
main paper) shows H2GCN consuming over 6× more GPU memory and incurring a 33× increase in
execution time compared to vanilla GCN, making it computationally prohibitive for many real-world
applications.

These methods underscore the importance of higher-order neighborhoods for heterophily. However,
they often involve either fixed schemes for incorporating multi-hop data or strategies that can
significantly increase model parameters and computational demands.

Spectral Approaches and Graph Filtering. Another line of work draws inspiration from graph
signal processing, designing spectral filters to capture varying frequencies of graph signals, which is
pertinent for heterophily where both high and low-frequency information can be crucial. GPR-GNN
[5] learns a set of weights for a linear combination of propagated feature matrices, where each matrix
corresponds to a different power of a generalized propagation matrix (e.g., normalized adjacency
matrix). This allows the model to learn an optimal polynomial filter for the task and graph at hand.
While GPR-GNN adaptively learns the filter coefficients, these coefficients are global for the entire
graph, meaning the spectral response is not tailored to individual nodes or local structures. This
global learning can limit its effectiveness on graphs exhibiting diverse local homophily/heterophily
patterns.

BernNet [11] employs Bernstein polynomial filters, which offer a more stable way to approximate
desired spectral filters. By adjusting the coefficients of the Bernstein basis polynomials, BernNet
can shape the filter response to capture complex patterns. Similar to GPR-GNN, BernNet learns
global filter coefficients. Its K-th order filter necessitates K separate sparse-dense multiplications,
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each incurring its own kernel overhead and intermediate storage, making it computationally intensive
despite its expressive power (Figure 2).

GCNII [4] addresses the oversmoothing problem in deep GCNs by incorporating an initial residual
connection and an identity mapping in each layer. This allows GCNII to build deeper models
that can potentially capture longer-range dependencies without performance degradation. While
GCNII improves information propagation in deep GNNs, its core message passing still relies on the
standard GCN aggregation, which is primarily homophily-oriented and doesn’t specifically address
heterophilic aggregation challenges beyond enabling greater depth. Overall, Spectral methods provide
a principled way to combine multi-hop information. However, their reliance on globally learned
filters often means they may not offer the fine-grained, node-level adaptivity required for graphs with
diverse local homophily/heterophily patterns.

Addressing Heterophily via Signed or Adaptive Message Aggregation. Some approaches aim
to differentiate how messages from neighbors are aggregated, sometimes allowing for "negative"
influences or class-aware aggregation. The concept of Signed Message Passing (SMP) [3, 38] allows
GNNs to assign negative weights in message passing, enabling the model to distinguish between
features from same-class and different-class neighbors. This allows the model to attract similar
neighbors and repel dissimilar ones. However, Liang et al. [18] identified that naive SMP can
suffer from undesirable multi-hop effects (e.g., when combining individually appropriate one-hop
propagation matrices) and vulnerability to oversmoothing in multi-class settings as mean embeddings
of different classes converge exponentially.

M2M-GNN (Multiset-to-Multiset GNN) [18] was proposed to overcome these limitations. It replaces
the standard multiset-to-element aggregation with a multiset-to-multiset approach. An attention
mechanism assigns neighbors into different "chunks" (ideally corresponding to different classes), and
then class-specific information is pooled from these chunks. This helps maintain the segregation of
information from potentially different classes. While M2M-GNN effectively segregates information,
it typically uses a fixed combination strategy (e.g., concatenation) for the resulting chunk vectors,
which may not optimally integrate the segregated information. Moreover, M2M-GNN can be
computationally intensive due to its per-edge MLP and segmented softmax operations, which cannot
be cast as one large matrix-matrix multiply, leading to numerous small kernel launches and frequent
intermediate result synchronization (Figure 2).

CPGNN (Class-Prototype Graph Neural Network) [41] tackles heterophily by first estimating initial
class probabilities for each node. It then propagates these "soft labels" or priors across the graph,
weighted by a trainable compatibility matrix that encodes the likelihood of different classes being
adjacent. This allows message passing to be guided by estimated class relationships. CPGNN offers
a novel way to incorporate class semantics into propagation. However, its propagation relies on
these estimated class compatibilities which are learned globally, and the message passing itself is
synchronous, potentially missing finer-grained local differences in how nodes should value their
neighbors from different hop distances.

Further, CO-GNN (Cooperative Graph Neural Networks) [8] represents a recent approach to node-
specific message passing through a cooperative learning framework. CO-GNN employs dual networks,
an action network that generates node-specific aggregation weights and an environment network
that provides context, enabling each node to learn individualized message passing strategies. While
this design achieves node-specific adaptation, it comes at substantial computational cost. The
dual-network architecture requires separate linear transformations and graph convolutions for both
networks at each layer, effectively doubling the computational load. Our profiling shows CO-GNN
incurs 4.4× backward pass overhead compared to GCN (forward: 1.820 ms, backward: 13.431 ms on
Cora).

Redefining Neighborhoods and Global Methods. A distinct set of approaches rethinks the notion
of a "neighbor" or allows for global information exchange, moving beyond fixed topological neigh-
borhoods. Geom-GCN [29] aggregates information from nodes in continuous space, constructing
neighborhoods based on structural similarity (e.g., nodes with similar local graph structures or posi-
tions in latent space) rather than direct edge connections. This allows aggregation from distant but
structurally similar nodes.

GloGNN [17] and its variants take a more direct global approach. They might learn a dense affinity
matrix or use attention mechanisms that allow each node to potentially aggregate information from
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all other nodes in the graph, irrespective of direct connections. This enables the model to capture
very long-range dependencies and global patterns.

While these methods can be powerful, especially Geom-GCN and GloGNN, they often come with
significant computational costs (e.g., computing pairwise similarities or attention over all nodes with
O(n2) complexity) and high memory requirements, making them challenging to scale to large graphs.
They also risk incorporating noise by connecting nodes that are globally related but contextually
irrelevant for a specific prediction.

Positioning of GAMMA. The existing landscape of GNNs for heterophily reveals a critical trade-off:
methods that are highly adaptive or capture global context are often computationally demanding,
while more efficient methods may lack the necessary node-specific adaptivity in how they leverage
multi-hop information. Many multi-hop GNNs use fixed schemes, globally learned weights for hop
combination, or feature concatenation strategies that escalate computational and memory demands.
GAMMA is designed to bridge this gap. It explicitly computes multi-hop representations but employs
a lightweight, iterative gating mechanism at each node to dynamically assess and combine information
from these different hop distances. Crucially, by using a shared linear transformation and learnable
scaling vectors for features from different hops, followed by a gating process that outputs a fixed-
dimension embedding, GAMMA avoids the parameter explosion and high memory footprint associated
with concatenating multi-hop features transformed by distinct weight matrices. This allows GAMMA
to capture both global (per-hop learned scaling) and local (per-node adaptive gating) heterophily
patterns efficiently, offering a compelling balance of expressive power, adaptability, and computational
performance, as demonstrated in our experiments (Figure 5).

E Supplementary Theoretical Analysis

We establish convergence guarantees, information-theoretic optimality, functional expressivity, and
universal approximation properties for GAMMA. Throughout this section, let G = (V,E) denote a
graph with n = |V | nodes, normalized adjacency matrix A ∈ Rn×n, and node features X ∈ Rn×din ,
where din denotes the input feature dimension.

E.1 Preliminaries and Notation

We begin by establishing the notation used throughout the theoretical analysis. Let K ≥ 0 denote the
maximum hop distance considered by GAMMA, where a p-hop neighborhood for p ∈ {0, 1, . . . ,K}
refers to nodes at distance exactly p from a given node in the graph. By convention, the 0-hop
neighborhood of node i is the node itself. The choice of K determines the receptive field of the
network, with larger K allowing information propagation from more distant nodes.

For node i ∈ V , we denote by H
(p)
i = (ApXW)i ∈ Rdout the p-hop aggregated features, where:

• Ap ∈ Rn×n represents the p-th power of the normalized adjacency matrix, capturing p-hop
connectivity

• W ∈ Rdin×dout is the shared projection matrix that transforms input features to a dout-
dimensional hidden space

• The subscript i extracts the i-th row, giving the representation specific to node i

• After this projection and propagation, hop-specific channel-wise scaling factors γp ∈ Rdout

are applied element-wise

To ensure scale-invariance and enable meaningful comparison across hops, we normalize these
embeddings. Let Ĥ(p)

i = H
(p)
i /∥H(p)

i ∥2 denote the L2-normalized embeddings, where ∥ · ∥2 is the
Euclidean norm. This normalization ensures ∥Ĥ(p)

i ∥ = 1 for all hops p, making dot products between
different hop embeddings interpretable as cosine similarities.

The routing mechanism operates iteratively over t = 0, 1, . . . , R − 1 iterations, where R is a
hyperparameter controlling the number of refinement steps. At iteration t, each node i maintains
routing logits b(t)

i ∈ RK+1, which are (K + 1)-dimensional vectors storing one logit value per hop
distance. These logits are initialized to b

(0)
i = 0, corresponding to uniform initial gating. The logits
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are converted to gating coefficients via the softmax function:

α
(t)
i,p =

exp(b
(t)
i,p)∑K

q=0 exp(b
(t)
i,q)

(11)

where α
(t)
i,p ∈ [0, 1] represents the weight assigned to hop p at iteration t for node i, and∑K

p=0 α
(t)
i,p = 1 ensures the coefficients form a valid probability distribution. We denote by

α
(t)
i = (α

(t)
i,0, . . . , α

(t)
i,K)T ∈ RK+1 the vector of all gating coefficients at iteration t, written com-

pactly as α(t)
i = softmax(b(t)

i ).

The aggregated representation before the squashing nonlinearity is computed as a weighted combina-
tion:

s
(t)
i =

K∑
p=0

α
(t)
i,pĤ

(p)
i ∈ Rdout (12)

This represents a convex combination of the normalized hop embeddings, where the weights are
determined by the current gating coefficients. The squashing function, inspired by capsule networks,
then normalizes this aggregated representation while preserving its direction:

v
(t)
i =

∥s(t)i ∥2

1 + ∥s(t)i ∥2
s
(t)
i

∥s(t)i ∥
(13)

The squashing function maps vectors to a bounded region: when ∥s(t)i ∥ → 0, we have ∥v(t)
i ∥ → 0,

and when ∥s(t)i ∥ → ∞, we have ∥v(t)
i ∥ → 1. This ensures ∥v(t)

i ∥ ∈ [0, 1] for all t.

The routing update rule refines the logits based on agreement scores between each hop embedding
and the current aggregated representation:

b
(t+1)
i,p = b

(t)
i,p + Ĥ

(p)
i · v(t)

i (14)

where Ĥ
(p)
i · v(t)

i = ⟨Ĥ(p)
i ,v

(t)
i ⟩ denotes the inner product. This update increases the logit for hop p

when its embedding aligns well with the current aggregated representation, creating a feedback loop
that iteratively refines the gating distribution.

Definition 1 (Gram Matrix and Agreement Scores). For node i, define the Gram matrix Gi ∈
R(K+1)×(K+1) with entries

(Gi)pq = ⟨Ĥ(p)
i , Ĥ

(q)
i ⟩ (15)

where p, q ∈ {0, 1, . . . ,K}. This matrix encodes the pairwise similarities between all hop em-
beddings for node i. Since it can be written as Gi = UT

i Ui where Ui = [Ĥ
(0)
i , . . . , Ĥ

(K)
i ]T ∈

R(K+1)×dout is the matrix whose rows are the normalized hop embeddings, the Gram matrix is positive
semidefinite. This means all its eigenvalues are non-negative: 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λK+1, where we
order eigenvalues in increasing order. Since each normalized embedding has unit norm, the diagonal
entries satisfy (Gi)pp = ∥Ĥ(p)

i ∥2 = 1, and by the trace formula,
∑K+1

k=1 λk = tr(Gi) = K + 1.
Combined with the operator norm bound ∥Gi∥ ≤ K + 1, we have λK+1 ≤ K + 1. However, since
(Gi)pq ∈ [−1, 1] (as cosine similarities), tighter bounds apply: λK+1 ≤ 1 when the embeddings
are identical, and λ1 ≥ 0 by positive semidefiniteness. We denote µi = λ1 ≥ 0 as the minimum
eigenvalue and Li = λK+1 ≤ K + 1 as the maximum eigenvalue. When µi > 0, the Gram matrix is
strictly positive definite, meaning the hop embeddings are linearly independent (up to the dimension
dout).

E.2 Detailed Convergence Analysis

We now analyze the convergence properties of the routing mechanism, establishing that it converges
to a unique fixed point with exponential rate. The analysis proceeds through several lemmas building
toward the main convergence theorem.
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Lemma 1 (Properties of the Free Energy Functional). Define the free energy functional for node i as
a function of the gating distribution α and the aggregated representation v:

Fi(α,v) = −
K∑

p=0

αp⟨Ĥ(p)
i ,v⟩+ 1

β

K∑
p=0

αp logαp (16)

where α ∈ ∆K+1 lies on the (K + 1)-dimensional probability simplex defined as

∆K+1 = {α ∈ RK+1 :

K∑
p=0

αp = 1, αp ≥ 0 for all p} (17)

and v ∈ Rdout with ∥v∥ ≤ 1 (bounded representation). The parameter β > 0 is an implicit inverse
temperature parameter arising from the softmax. The first term −

∑K
p=0 αp⟨Ĥ(p)

i ,v⟩ encourages
alignment between the weighted hop embeddings and the target representation, while the second
term 1

β

∑K
p=0 αp logαp is the negative entropy, which regularizes the distribution to prevent overly

concentrated weights. Then:

1. For fixed v, Fi(·,v) is strictly convex on ∆K+1 with unique minimizer

α∗(v) =
1

Z(v)
exp(βGiv) (18)

where Z(v) =
∑K

p=0 exp(β⟨Ĥ
(p)
i ,v⟩) is the partition function ensuring normalization, and

we use the notation [exp(u)]p = exp(up) to denote element-wise exponential of a vector u.

2. The gradient with respect to α (in the tangent space of ∆K+1, accounting for the constraint∑
p αp = 1) satisfies

∇αFi(α,v) = −

 ⟨Ĥ(0)
i ,v⟩
...

⟨Ĥ(K)
i ,v⟩

+
1

β

 logα0 + 1
...

logαK + 1

+ λ1 (19)

for some Lagrange multiplier λ ∈ R enforcing the constraint
∑

p αp = 1, where 1 =

(1, 1, . . . , 1)T ∈ RK+1 is the all-ones vector.

3. The Hessian (restricted to the tangent space of ∆K+1) satisfies

∇2
ααFi(α,v) =

1

β
diag(α)−1 ≻ 0 (20)

where diag(α)−1 = diag(1/α0, . . . , 1/αK) is a diagonal matrix with entries 1/αp on
the diagonal. The notation ≻ 0 means the matrix is positive definite, establishing strict
convexity.

Proof. For part (1), we minimize Fi(α,v) subject to the constraint
∑

p αp = 1 (and implicitly
αp ≥ 0) via the method of Lagrange multipliers. The Lagrangian is:

L(α, λ) = −
K∑

p=0

αp⟨Ĥ(p)
i ,v⟩+ 1

β

K∑
p=0

αp logαp + λ

(
K∑

p=0

αp − 1

)
(21)

where λ is the Lagrange multiplier associated with the equality constraint.

Setting ∂L
∂αp

= 0 for each p ∈ {0, 1, . . . ,K}:

∂

∂αp

[
−αp⟨Ĥ(p)

i ,v⟩+ 1

β
αp logαp + λαp

]
= −⟨Ĥ(p)

i ,v⟩+ 1

β
(logαp + 1) + λ = 0 (22)

where we used d
dx [x log x] = log x+ 1.
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Solving for αp:
1

β
(logαp + 1) = ⟨Ĥ(p)

i ,v⟩ − λ (23)

logαp = β⟨Ĥ(p)
i ,v⟩ − βλ− 1 (24)

αp = exp(β⟨Ĥ(p)
i ,v⟩ − βλ− 1) = e−βλ−1 exp(β⟨Ĥ(p)

i ,v⟩) (25)

The constant e−βλ−1 is determined by the normalization constraint
∑K

p=0 αp = 1:

K∑
p=0

αp = e−βλ−1
K∑

p=0

exp(β⟨Ĥ(p)
i ,v⟩) = 1 (26)

Therefore:
e−βλ−1 =

1∑K
q=0 exp(β⟨Ĥ

(q)
i ,v⟩)

≡ 1

Z(v)
(27)

where we define the partition function Z(v) =
∑K

q=0 exp(β⟨Ĥ
(q)
i ,v⟩).

Substituting back:

α∗
p(v) =

exp(β⟨Ĥ(p)
i ,v⟩)

Z(v)
=

exp(β⟨Ĥ(p)
i ,v⟩)∑K

q=0 exp(β⟨Ĥ
(q)
i ,v⟩)

(28)

which is precisely the softmax function with temperature β−1.

For part (2), the gradient of Fi with respect to α is computed component-wise:
∂Fi

∂αp
= −⟨Ĥ(p)

i ,v⟩+ 1

β
(logαp + 1) (29)

Incorporating the constraint via the Lagrange multiplier λ gives the form in the lemma statement.

For part (3), we compute the Hessian of the entropy term H(α) = −
∑

p αp logαp (noting the sign
convention). The second derivative is:

∂2H(α)

∂αp∂αq
= − ∂

∂αq
[logαp + 1] = −δpq

αp
(30)

where δpq is the Kronecker delta (equals 1 if p = q, and 0 otherwise). Therefore:

∇2H(α) = −diag(1/α0, . . . , 1/αK) (31)

The first term in Fi, namely −
∑

p αp⟨Ĥ(p)
i ,v⟩, is linear in α, so its Hessian is zero. Thus:

∇2
ααFi =

1

β
diag(1/α0, . . . , 1/αK) =

1

β
diag(α)−1 (32)

Since αp > 0 for all p in the interior of ∆K+1 and β > 0, all diagonal entries are positive, making
the Hessian positive definite: ∇2

ααFi ≻ 0. This establishes strict convexity of Fi(·,v) on the interior
of the simplex.

Lemma 2 (Monotonicity via KL Divergence). Define the potential function Φ
(t)
i = α

(t)T
i Giα

(t)
i ∈

R, which measures the expected squared norm of the aggregated representation (before squashing) at
iteration t. This potential is a quadratic form in the gating coefficients. Then for the routing update
described in the preliminaries:

Φ
(t+1)
i − Φ

(t)
i = DKL(α

(t+1)
i ∥α(t)

i ) +
∑
p,q

∆α
(t)
i,p∆α

(t)
i,q(Gi)pq ≥ 0 (33)

where ∆α
(t)
i,p = α

(t+1)
i,p − α

(t)
i,p denotes the change in the gating coefficient for hop p from iteration

t to t+ 1, and DKL(α∥β) =
∑

p αp log(αp/βp) denotes the Kullback-Leibler divergence between
two probability distributions α and β on the simplex. The KL divergence is always non-negative,
with DKL(α∥β) = 0 if and only if α = β. The second term is non-negative because Gi is positive
semidefinite. Therefore, the potential is monotonically increasing across routing iterations.
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Proof. We expand the potential difference Φ
(t+1)
i − Φ

(t)
i by substituting the definitions. Recall that:

Φ
(t+1)
i = α

(t+1)T
i Giα

(t+1)
i =

K∑
p=0

K∑
q=0

α
(t+1)
i,p α

(t+1)
i,q (Gi)pq (34)

Φ
(t)
i = α

(t)T
i Giα

(t)
i =

K∑
p=0

K∑
q=0

α
(t)
i,pα

(t)
i,q(Gi)pq (35)

Expanding the potential difference:

Φ
(t+1)
i − Φ

(t)
i =

∑
p,q

α
(t+1)
i,p α

(t+1)
i,q (Gi)pq −

∑
p,q

α
(t)
i,pα

(t)
i,q(Gi)pq (36)

Substitute α
(t+1)
i,p = α

(t)
i,p +∆α

(t)
i,p to express new coefficients in terms of old coefficients plus their

change:

Φ
(t+1)
i − Φ

(t)
i =

∑
p,q

(α
(t)
i,p +∆α

(t)
i,p)(α

(t)
i,q +∆α

(t)
i,q)(Gi)pq −

∑
p,q

α
(t)
i,pα

(t)
i,q(Gi)pq (37)

Expanding the product:

=
∑
p,q

[
α
(t)
i,pα

(t)
i,q + α

(t)
i,p∆α

(t)
i,q +∆α

(t)
i,pα

(t)
i,q +∆α

(t)
i,p∆α

(t)
i,q

]
(Gi)pq (38)

−
∑
p,q

α
(t)
i,pα

(t)
i,q(Gi)pq (39)

The terms
∑

p,q α
(t)
i,pα

(t)
i,q(Gi)pq cancel, leaving:

Φ
(t+1)
i − Φ

(t)
i =

∑
p,q

(α
(t)
i,p∆α

(t)
i,q + α

(t)
i,q∆α

(t)
i,p +∆α

(t)
i,p∆α

(t)
i,q)(Gi)pq (40)

Using the symmetry of the Gram matrix (Gi)pq = (Gi)qp (since it represents inner products), the
terms

∑
p,q α

(t)
i,p∆α

(t)
i,q(Gi)pq and

∑
p,q α

(t)
i,q∆α

(t)
i,p(Gi)pq are equal (by swapping indices p ↔ q in

the latter sum):

Φ
(t+1)
i − Φ

(t)
i = 2

∑
p,q

α
(t)
i,p∆α

(t)
i,q(Gi)pq +

∑
p,q

∆α
(t)
i,p∆α

(t)
i,q(Gi)pq (41)

= 2
∑
p

∆α
(t)
i,p

(∑
q

α
(t)
i,q(Gi)pq

)
+
∑
p,q

∆α
(t)
i,p∆α

(t)
i,q(Gi)pq (42)

Now we interpret the term
∑

q α
(t)
i,q(Gi)pq . By the definition of the Gram matrix:∑

q

α
(t)
i,q(Gi)pq =

∑
q

α
(t)
i,q⟨Ĥ

(p)
i , Ĥ

(q)
i ⟩ =

〈
Ĥ

(p)
i ,
∑
q

α
(t)
i,qĤ

(q)
i

〉
= ⟨Ĥ(p)

i , s
(t)
i ⟩ (43)

where s
(t)
i =

∑
q α

(t)
i,qĤ

(q)
i is the aggregated representation before squashing.

The squashed representation v
(t)
i is related to s

(t)
i by:

v
(t)
i =

∥s(t)i ∥2

1 + ∥s(t)i ∥2
s
(t)
i

∥s(t)i ∥
= c

(t)
i

s
(t)
i

∥s(t)i ∥
(44)

where c
(t)
i =

∥s(t)i ∥2

1+∥s(t)i ∥2
∈ [0, 1) is a scalar. This shows v(t)

i is proportional to the unit vector in the

direction of s(t)i . Therefore:

⟨Ĥ(p)
i , s

(t)
i ⟩ = ∥s(t)i ∥⟨Ĥ(p)

i , s
(t)
i /∥s(t)i ∥⟩ = ∥s(t)i ∥

c
(t)
i

⟨Ĥ(p)
i ,v

(t)
i ⟩ (45)
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However, for the proof, the key quantity is the agreement score s(t)p = ⟨Ĥ(p)
i ,v

(t)
i ⟩, which appears in

the routing update. From the routing update rule:

b
(t+1)
i,p = b

(t)
i,p + s(t)p (46)

where s
(t)
p = ⟨Ĥ(p)

i ,v
(t)
i ⟩ is the agreement score.

The routing update gives the new gating coefficients via softmax:

α
(t+1)
i,p = softmax(b(t)i,p + s(t)p )p =

exp(b
(t)
i,p + s

(t)
p )∑

r exp(b
(t)
i,r + s

(t)
r )

(47)

We now analyze the first term in the expansion using KL divergence. The KL divergence between the
new and old distributions is:

DKL(α
(t+1)∥α(t)) =

∑
p

α
(t+1)
i,p log

α
(t+1)
i,p

α
(t)
i,p

(48)

=
∑
p

α
(t+1)
i,p

[
logα

(t+1)
i,p − logα

(t)
i,p

]
(49)

From the softmax formulas:

logα
(t+1)
i,p = b

(t)
i,p + s(t)p − logZ(t+1) (50)

logα
(t)
i,p = b

(t)
i,p − logZ(t) (51)

where Z(t) =
∑

r exp(b
(t)
i,r) and Z(t+1) =

∑
r exp(b

(t)
i,r + s

(t)
r ) are the partition functions.

Subtracting:
logα

(t+1)
i,p − logα

(t)
i,p = s(t)p − logZ(t+1) + logZ(t) (52)

Substituting into the KL divergence:

DKL(α
(t+1)∥α(t)) =

∑
p

α
(t+1)
i,p [s(t)p − logZ(t+1) + logZ(t)] (53)

=
∑
p

α
(t+1)
i,p s(t)p − logZ(t+1) + logZ(t) (54)

where we used
∑

p α
(t+1)
i,p = 1.

Now we apply Jensen’s inequality to bound logZ(t+1) − logZ(t). Since the exponential function is
convex:

Z(t+1) =
∑
r

exp(b
(t)
i,r + s(t)r ) =

∑
r

exp(b
(t)
i,r) exp(s

(t)
r ) (55)

= Z(t)
∑
r

exp(b
(t)
i,r)

Z(t)
exp(s(t)r ) = Z(t)

∑
r

α
(t)
i,r exp(s

(t)
r ) (56)

By Jensen’s inequality (since exp is convex and
∑

r α
(t)
i,r = 1):

∑
r

α
(t)
i,r exp(s

(t)
r ) ≥ exp

(∑
r

α
(t)
i,rs

(t)
r

)
(57)

Therefore:

Z(t+1) ≥ Z(t) exp

(∑
r

α
(t)
i,rs

(t)
r

)
(58)
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Taking logarithms:
logZ(t+1) − logZ(t) ≥

∑
r

α
(t)
i,rs

(t)
r (59)

Substituting back into the KL divergence expression:

DKL(α
(t+1)∥α(t)) ≥

∑
p

α
(t+1)
i,p s(t)p −

∑
r

α
(t)
i,rs

(t)
r (60)

=
∑
p

(α
(t+1)
i,p − α

(t)
i,p)s

(t)
p =

∑
p

∆α
(t)
i,ps

(t)
p (61)

Combining with the earlier expansion of Φ(t+1)
i − Φ

(t)
i and noting that Gi is positive semidefinite

(hence the quadratic form
∑

p,q ∆α
(t)
i,p∆α

(t)
i,q(Gi)pq ≥ 0), we obtain:

Φ
(t+1)
i − Φ

(t)
i ≥ DKL(α

(t+1)
i ∥α(t)

i ) ≥ 0 (62)

This establishes monotonicity of the potential function.

Theorem 1 (Exponential Convergence to Unique Fixed Point). Assume the Gram matrix Gi is strictly
positive definite with minimum eigenvalue µi > 0 and maximum eigenvalue Li. This assumption
holds when the normalized hop embeddings {Ĥ(p)

i }Kp=0 span a subspace of dimension K + 1 (or
equivalently, when these K + 1 vectors are linearly independent). Initialize the routing logits to
b
(0)
i = 0, corresponding to uniform initial gating coefficients α(0)

i,p = 1/(K + 1) for all p. Then:

1. The routing converges exponentially to a unique fixed point b∗
i ∈ RK+1 with rate:

∥b(t)
i − b∗

i ∥2 ≤

√
Li

µi

(
1− µi

2Li

)t/2

∥b(0)
i − b∗

i ∥2 (63)

where ∥ · ∥2 denotes the Euclidean norm. The convergence rate depends on the condi-
tion number κi = Li/µi of the Gram matrix: smaller condition numbers lead to faster
convergence.

2. The converged gating coefficients satisfy:

α∗
i =

G−1
i 1

1TG−1
i 1

(64)

where 1 = (1, 1, . . . , 1)T ∈ RK+1 is the all-ones vector. This gives an explicit formula for
the equilibrium distribution in terms of the Gram matrix.

3. The convergence satisfies the Polyak-Łojasiewicz (PL) condition:
1

2
∥∇Φi(α)∥22 ≥ µi(Φ

∗
i − Φi(α)) (65)

for all α in a neighborhood of α∗, where ∇Φi(α) denotes the gradient of the potential
function. The PL condition is a weaker condition than strong convexity but is sufficient to
guarantee exponential convergence for gradient-based methods.

Proof. Part 1: Existence and Uniqueness of Fixed Point.

From Lemma 2, the potential function Φ
(t)
i = α

(t)T
i Giα

(t)
i is monotonically increasing across

iterations. We now establish that it is also bounded above.

Since ∥Ĥ(p)
i ∥ = 1 for all p ∈ {0, 1, . . . ,K} (by normalization) and α

(t)
i lies on the probability

simplex (so
∑

p α
(t)
i,p = 1), we can bound:

Φ
(t)
i = α

(t)T
i Giα

(t)
i =

∑
p,q

α
(t)
i,pα

(t)
i,q⟨Ĥ

(p)
i , Ĥ

(q)
i ⟩ (66)

=

〈∑
p

α
(t)
i,pĤ

(p)
i ,
∑
q

α
(t)
i,qĤ

(q)
i

〉
=

∥∥∥∥∥∑
p

α
(t)
i,pĤ

(p)
i

∥∥∥∥∥
2

(67)
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By the triangle inequality and the fact that
∑

p α
(t)
i,p = 1:∥∥∥∥∥∑

p

α
(t)
i,pĤ

(p)
i

∥∥∥∥∥ ≤
∑
p

α
(t)
i,p∥Ĥ

(p)
i ∥ =

∑
p

α
(t)
i,p · 1 = 1 (68)

Therefore Φ
(t)
i ≤ 1 for all t. By the monotone convergence theorem, since Φ

(t)
i is monotonically

increasing and bounded above, the limit limt→∞ Φ
(t)
i = Φ∗

i ∈ [0, 1] exists.

At a fixed point, the routing coefficients no longer change: α(t+1)
i = α

(t)
i , which implies ∆α

(t)
i = 0.

From Lemma 2, at a fixed point:

Φ
(t+1)
i − Φ

(t)
i = DKL(α

(t+1)
i ∥α(t)

i ) +
∑
p,q

∆α
(t)
i,p∆α

(t)
i,q(Gi)pq = 0 (69)

Since both terms are non-negative, each must be zero. In particular:

DKL(α
(t+1)
i ∥α(t)

i ) = 0 ⇐⇒ α
(t+1)
i = α

(t)
i (70)

To characterize the fixed point, we consider the optimization problem that the routing implicitly
solves:

α∗ = arg max
α∈∆K+1

Φi(α) = arg max
α∈∆K+1

αTGiα (71)

This is a quadratic program over the probability simplex. To solve it, we form the Lagrangian:

L(α, λ) = αTGiα− λ(1Tα− 1) (72)

where λ ∈ R is the Lagrange multiplier enforcing the constraint
∑

p αp = 1.

The first-order optimality condition (KKT condition) is:
∂L
∂α

= 2Giα− λ1 = 0 (73)

Since Gi is strictly positive definite (µi > 0 by assumption), it is invertible. Therefore:

α =
λ

2
G−1

i 1 (74)

The constraint 1Tα = 1 determines the Lagrange multiplier:

1Tα =
λ

2
1TG−1

i 1 = 1 =⇒ λ =
2

1TG−1
i 1

(75)

Substituting back:

α∗ =
G−1

i 1

1TG−1
i 1

(76)

To verify this is the unique global maximum, note that the objective αTGiα is strictly convex on the
compact convex set ∆K+1 (since the Hessian 2Gi ≻ 0). A strictly convex function on a compact
convex set has a unique maximizer, establishing uniqueness of α∗.

Part 2: Convergence Rate via Polyak-Łojasiewicz.

To analyze the convergence rate, we work with the negative potential L(α) = −αTGiα (note the
sign flip, converting maximization to minimization). The gradient in the tangent space of ∆K+1 is
approximately (ignoring the constraint for the moment):

∇L(α) = −2Giα (77)

To account for the constraint
∑

p αp = 1, we project this gradient onto the tangent space of the
simplex. The tangent space at α consists of vectors u satisfying 1Tu = 0 (zero sum). The projected
gradient is:

∇tanL(α) = −2Giα+
2(αTGiα)

(1Tα)
1 (78)

27



However, for the analysis, it suffices to work with the unprojected gradient and use the Polyak-
Łojasiewicz (PL) condition, which is weaker than strong convexity.

The PL condition states that for all α in a neighborhood of the optimum:

1

2
∥∇L(α)∥22 ≥ µi(L(α)− L(α∗)) (79)

To establish this, first compute:

L(α)− L(α∗) = −αTGiα+ (α∗)TGiα
∗ (80)

Expanding α = α∗ + (α−α∗):

−αTGiα = −(α∗)TGiα
∗ − 2(α∗)TGi(α−α∗)− (α−α∗)TGi(α−α∗) (81)

Using the first-order condition Giα
∗ = λ∗

2 1 and the fact that 1T (α − α∗) = 0 (both are on the
simplex), the middle term vanishes:

(α∗)TGi(α−α∗) =
λ∗

2
1T (α−α∗) = 0 (82)

Therefore:
L(α)− L(α∗) = −(α−α∗)TGi(α−α∗) (83)

By the eigenvalue bounds on Gi (with µi ≤ λ ≤ Li for all eigenvalues λ):

−(α−α∗)TGi(α−α∗) ≥ −Li∥α−α∗∥22 (84)

For the gradient norm:

∥∇L(α)∥22 = ∥ − 2Giα∥22 = 4∥Giα∥22 (85)

Using α = α∗ + (α−α∗) and the first-order condition:

Giα = Giα
∗ +Gi(α−α∗) =

λ∗

2
1+Gi(α−α∗) (86)

For vectors on the simplex tangent space (where 1T (α−α∗) = 0), the constant vector 1 is orthogonal
to the difference. Therefore:

∥∇L(α)∥22 = 4∥Gi(α−α∗)∥22 ≥ 4µi∥α−α∗∥22 (87)

Combining the two inequalities:

∥∇L(α)∥22 ≥ 4µi∥α−α∗∥22 ≥ 4µi

Li
(−L(α) + L(α∗)) (88)

This establishes the PL condition with constant 2µi/Li.

For an iterative update scheme with effective step size η, the PL condition implies:

L(α(t+1))− L(α∗) ≤ (1− η · 2µi/Li)(L(α(t))− L(α∗)) (89)

Taking η = 1/2 (a typical choice in routing algorithms):

L(α(t))− L(α∗) ≤
(
1− µi

Li

)t

(L(α(0))− L(α∗)) (90)

Converting back to the potential Φi = −L:

Φ∗
i − Φ

(t)
i ≤

(
1− µi

Li

)t

(Φ∗
i − Φ

(0)
i ) (91)
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Using the relation between the potential and the distance to optimum (from the eigenvalue inequality):

∥α(t) −α∗∥22 ≤ 1

µi
(Φ∗

i − Φ
(t)
i ) ≤ 1

µi

(
1− µi

Li

)t

(Φ∗
i − Φ

(0)
i ) (92)

Taking square roots:

∥α(t) −α∗∥2 ≤

√
Φ∗

i − Φ
(0)
i

µi

(
1− µi

2Li

)t/2

(93)

Since Φ
(0)
i ≥ 0 and Φ∗

i ≤ 1, we have Φ∗
i − Φ

(0)
i ≤ 1. Also, for the routing logits, the relationship

α(t) = softmax(b(t)) and the Lipschitz property of softmax imply a similar bound on ∥b(t) − b∗∥2,
completing the proof of part (1).

E.3 Information-Theoretic Optimality

We now establish that the routing mechanism approximately maximizes the mutual information
between the aggregated node representation and its label. Mutual information I(X;Y ) quantifies the
amount of information obtained about random variable Y by observing random variable X , and is
symmetric: I(X;Y ) = I(Y ;X).

Theorem 2 (Mutual Information Maximization). For node i ∈ V , let Ip(i) = I(H
(p)
i ; yi) denote the

mutual information between the p-hop representation H
(p)
i ∈ Rdout and the node label yi ∈ {0, 1}

(for binary classification; the result extends to multi-class). Assume:

1. Features H
(p)
i |yi follow multivariate Gaussian distributions N (µ

(p)
yi ,Σp) with class-

conditional means µ
(p)
0 ,µ

(p)
1 ∈ Rdout and common covariance Σp ∈ Rdout×dout . This

assumption is reasonable due to the central limit theorem: hop embeddings are averages
over many neighbors, hence approximately Gaussian.

2. Neighborhood sizes satisfy |N (p)(i)| ≥ C log dout for some constant C > 0, where N (p)(i)
denotes the set of nodes at distance exactly p from node i. This ensures sufficient averaging
for concentration bounds.

3. Class priors are balanced: P(yi = 0) = P(yi = 1) = 1/2. This simplifies the analysis but
is not essential; the result generalizes to imbalanced classes with minor modifications.

Then the converged gating coefficients α∗
i approximately maximize the weighted mutual information:

α∗
i ≈ arg max

α∈∆K+1

K∑
p=0

αpIp(i) (94)

with approximation error O(
√

log dout/|N (p)(i)|), which vanishes as neighborhood sizes grow.

Proof. Step 1: Gaussian Mutual Information.

Under the Gaussian assumption, the mutual information between H
(p)
i and yi can be expressed via

differential entropies:

I(H
(p)
i ; yi) = H(H

(p)
i )−H(H

(p)
i |yi) (95)

where H(H
(p)
i ) = −

∫
p(h) log p(h)dh is the differential entropy of the marginal distribution, and

H(H
(p)
i |yi) is the conditional entropy.

For the conditional entropy, using the balanced class prior assumption:

H(H
(p)
i |yi) =

1∑
c=0

P(yi = c)H(H
(p)
i |yi = c) =

1

2

1∑
c=0

H(H
(p)
i |yi = c) (96)
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For a Gaussian random vector H(p)
i |yi = c ∼ N (µ

(p)
c ,Σp), the differential entropy is:

H(H
(p)
i |yi = c) =

dout

2
log(2πe) +

1

2
log det(Σp) (97)

where det(Σp) is the determinant of the covariance matrix.

Since the entropy is the same for both classes (common covariance):

H(H
(p)
i |yi) =

dout

2
log(2πe) +

1

2
log det(Σp) (98)

The marginal distribution is a mixture of Gaussians:

p(h) =
1

2
N (h;µ

(p)
0 ,Σp) +

1

2
N (h;µ

(p)
1 ,Σp) (99)

For well-separated means µ(p)
0 and µ

(p)
1 , the entropy of this mixture can be approximated. When the

separation ∥µ(p)
0 − µ

(p)
1 ∥ is large relative to the covariance, the two Gaussian components have little

overlap, and the entropy is approximately:

H(H
(p)
i ) ≈ dout

2
log(2πe) +

1

2
log det(Σp) +

1

8
(µ

(p)
0 − µ

(p)
1 )TΣ−1

p (µ
(p)
0 − µ

(p)
1 ) (100)

The approximation comes from a second-order Taylor expansion of the mixture entropy around the
limit of widely separated components. Subtracting the conditional entropy:

Ip(i) = I(H
(p)
i ; yi) ≈

1

8
(µ

(p)
0 − µ

(p)
1 )TΣ−1

p (µ
(p)
0 − µ

(p)
1 ) =

1

8
∥µ(p)

0 − µ
(p)
1 ∥2

Σ−1
p

(101)

where ∥v∥2
Σ−1

p
= vTΣ−1

p v is the squared Mahalanobis distance, which measures distance in units
normalized by the covariance.

This shows that mutual information is proportional to the squared distance between class centroids in
the metric induced by the covariance.

Step 2: Connection to Agreement Scores.

For node i with true label yi = c ∈ {0, 1}, the normalized hop embedding after aggregation over its
p-hop neighborhood concentrates around the class centroid:

Ĥ
(p)
i ≈ µ

(p)
c

∥µ(p)
c ∥

+ ϵp (102)

where ϵp ∈ Rdout is noise with covariance O(σ2/|N (p)(i)|) · I, arising from averaging over |N (p)(i)|
neighbors. The variance decreases as 1/|N (p)(i)| by standard concentration results.

The dot product (agreement score) between this normalized embedding and the aggregated represen-
tation vi =

∑
q αqĤ

(q)
i is:

⟨Ĥ(p)
i ,vi⟩ ≈

〈
µ

(p)
c

∥µ(p)
c ∥

,
∑
q

αq
µ

(q)
c

∥µ(q)
c ∥

〉
+O(∥ϵ∥) (103)

=
∑
q

αq
µ

(p)
c · µ(q)

c

∥µ(p)
c ∥∥µ(q)

c ∥
+O(∥ϵ∥) (104)

When the routing converges, vi aligns with the true class centroid direction. Hops where the class
centroids are well-separated (large ∥µ(p)

0 − µ
(p)
1 ∥) provide stronger class-discriminative signals,

yielding larger agreement scores when vi points toward the correct class.

Step 3: Quantitative Relationship.
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Under the isotropy assumption that Σp = σ2I (spherical Gaussian, a common simplification), the
Mahalanobis distance reduces to the Euclidean distance:

Ip(i) ≈
1

8σ2
∥µ(p)

0 − µ
(p)
1 ∥22 (105)

The agreement score for node i with label yi = c satisfies:

⟨Ĥ(p)
i ,vi⟩ ≈ cos(θp) =

µ
(p)
c · µc

∥µ(p)
c ∥∥µc∥

(106)

where µc = E[vi|yi = c] is the expected aggregated centroid for class c, and θp is the angle between
the hop embedding and the aggregated representation.

For hops where µ
(p)
0 and µ

(p)
1 are well-separated, the class-conditional agreement scores differ

significantly. Specifically, the difference in agreement between the two classes is:

E[⟨Ĥ(p)
i ,vi⟩|yi = 0]− E[⟨Ĥ(p)

i ,vi⟩|yi = 1] ∝ ∥µ(p)
0 − µ

(p)
1 ∥ (107)

Therefore, maximizing the weighted sum of agreement scores
∑

p αp⟨Ĥ(p)
i ,vi⟩ (which the routing

does via Theorem 1) is approximately equivalent to maximizing the weighted mutual information∑
p αpIp(i).

Step 4: Concentration Bound.

To formalize the approximation error, we use Hoeffding’s inequality. For |N (p)(i)| = np neighbors
at hop p, each contributing independently to the aggregation:

P
(∣∣∣⟨Ĥ(p)

i ,vi⟩ − E[⟨Ĥ(p)
i ,vi⟩]

∣∣∣ > ϵ
)
≤ 2 exp

(
−npϵ

2

2dout

)
(108)

This follows because the inner product can be viewed as a sum of dout terms, each bounded. For
np ≥ C log dout with C > 2, choosing ϵ =

√
2dout log(2/δ)/np where δ ∈ (0, 1) is a failure

probability:

P

(∣∣∣⟨Ĥ(p)
i ,vi⟩ − E[⟨Ĥ(p)

i ,vi⟩]
∣∣∣ >√2dout log(2/δ)

np

)
≤ δ (109)

With high probability (at least 1− (K + 1)δ by a union bound over all K + 1 hops):∣∣∣∣∣
K∑

p=0

αp⟨Ĥ(p)
i ,vi⟩ −

K∑
p=0

αpE[⟨Ĥ(p)
i ,vi⟩]

∣∣∣∣∣ ≤
K∑

p=0

αp

√
2dout log(2/δ)

np
≤

√
2dout log(2/δ)

minp np
(110)

Since the routing from Theorem 1 maximizes the empirical agreement
∑

p αp⟨Ĥ(p)
i ,vi⟩, and this

differs from the expected agreement (which is proportional to mutual information by Steps 1-3)
by at most O(

√
log dout/np), the converged α∗

i approximately maximizes the weighted mutual
information

∑
p αpIp(i) up to this concentration error.

E.4 Functional Expressivity

We now establish that GAMMA’s function class contains the function class of concatenation-based
multi-hop GNNs, showing that GAMMA is at least as expressive.
Theorem 3 (Expressivity Hierarchy). Let Fconcat denote the function class of multi-hop concatenation
GNNs that use hop-specific weight matrices {W(p) ∈ Rdin×dout}Kp=0 to independently transform
features from each hop before concatenating them. Let FGAMMA denote GAMMA’s function class with
shared projection W ∈ Rdin×dout , channel-wise scaling factors {γp ∈ Rdout}Kp=0, and adaptive gating
via the routing mechanism. Then:

Fconcat ⊆ FGAMMA (111)
Moreover, for any ϵ > 0 and any function f ∈ Fconcat, there exists a function g ∈ FGAMMA such that
∥f − g∥∞ < ϵ on any compact domain, where ∥ · ∥∞ denotes the supremum norm.
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Proof. We construct an explicit simulation of concatenation-based architectures using GAMMA.

Consider a concatenation-based architecture that produces node representations by:

f(X,A)i = Φ
(
[W(0)H

(0)
i , . . . ,W(K)H

(K)
i ]

)
(112)

where:

• H
(p)
i = (ApX)i ∈ Rdin is the p-hop propagated feature for node i (before any projection)

• W(p) ∈ Rdin×dout is the hop-specific transformation matrix

• The concatenation [·, . . . , ·] produces a vector in R(K+1)dout

• Φ : R(K+1)dout → RC is a downstream network (e.g., MLP with classification head)
producing C-dimensional output (e.g., class logits)

To simulate this with GAMMA, we construct the following:

Step 1: Dimension Expansion. Set the hidden dimension to d′out = (K + 1)dout, which is (K + 1)
times larger than the original concatenation dimension per hop.

Step 2: Disable Routing. Initialize routing to uniform distribution: α
(0)
i,p = 1/(K + 1) for all

p ∈ {0, . . . ,K}, and set the number of routing iterations to R = 0. This prevents any adaptive
refinement, making the gating static and uniform across all hops.

Step 3: Partition Feature Space via Scaling Factors. Configure the channel-wise scaling factors
γp ∈ Rd′

out to partition the expanded feature space into (K + 1) non-overlapping blocks, one per hop:

γp = [0, . . . , 0︸ ︷︷ ︸
pdout

, wp,1, . . . , wp,dout︸ ︷︷ ︸
dout entries

, 0, . . . , 0︸ ︷︷ ︸
(K−p)dout

] ∈ R(K+1)dout (113)

where the entries wp,j for j ∈ {1, . . . , dout} encode the entries of the j-th column of W(p). Specifi-
cally, if W(p) ∈ Rdin×dout is the original hop-specific matrix, we set the shared projection W to be an
identity (or simple linear embedding), and use γp to apply the transformation post-propagation.

More precisely, setting W = Idin (identity matrix, assuming din = d′out or with appropriate padding),
the p-hop embedding becomes:

H
(p)
i = (ApXW)i = (ApX)i (114)

Applying the scaling factor γp element-wise isolates the transformation to a specific block of the
feature space.

Step 4: Aggregation with Uniform Weights. The aggregated representation (before squashing,
which we can effectively disable by setting appropriate parameters) becomes:

vi =

K∑
p=0

αi,p(γp ⊙H
(p)
i ) (115)

=

K∑
p=0

1

K + 1
(γp ⊙H

(p)
i ) (116)

=
1

K + 1
[W(0)H

(0)
i , . . . ,W(K)H

(K)
i ] (117)

where the notation [·, . . . , ·] now represents the blocked structure induced by the scaling factors. The
factor of 1/(K + 1) comes from the uniform gating.

Step 5: Adjust Output Layer. Apply an output transformation Φ′ = (K + 1)Φ to compensate for
the averaging factor 1/(K + 1). This gives:

g(X,A)i = Φ′(vi) = (K+1)Φ

(
1

K + 1
[W(0)H

(0)
i , . . . ,W(K)H

(K)
i ]

)
= Φ([W(0)H

(0)
i , . . . ,W(K)H

(K)
i ])

(118)
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This exactly matches f(X,A)i, establishing that f can be represented by GAMMA, hence f ∈
FGAMMA.

For the approximation statement: Any function in Fconcat can be written as a composition of the
multi-hop feature extraction (linear maps) and the downstream network Φ (nonlinearities). By the
universal approximation theorem for neural networks, Φ can approximate any continuous function to
arbitrary precision given sufficient capacity. The construction above shows that GAMMA can exactly
represent the concatenated multi-hop features. Therefore, by approximating Φ with a sufficiently
large network (increasing the capacity of the final layers in GAMMA), we can approximate any
f ∈ Fconcat to within ϵ error.

E.5 Universal Approximation

Finally, we establish that GAMMA can universally approximate any continuous function on graphs,
with explicit bounds on the required architecture size.
Theorem 4 (Universal Approximation with Explicit Rates). Let K ⊂ Rn×din × Rn×n be a compact
set of graph instances (node features and adjacency matrices) with diameter D under some norm
∥ · ∥. Let f∗ : K → Rn×C be a Lipschitz continuous function mapping graph instances to node-wise
outputs (e.g., node classifications) with Lipschitz constant Lf , meaning:

∥f∗(X1,A1)− f∗(X2,A2)∥2 ≤ Lf∥(X1,A1)− (X2,A2)∥ (119)

for all (X1,A1), (X2,A2) ∈ K. Then for any ϵ > 0, there exists a GAMMA network f̃ with
parameters:

K = O(logn) hops (maximum hop distance) (120)

R = O

(
log(D/ϵ)

µ

)
routing iterations (refinement steps) (121)

dout = O

((
LfD

ϵ

)din/2
)

hidden dimension (feature space size) (122)

such that sup(X,A)∈K ∥f̃(X,A) − f∗(X,A)∥2 < ϵ, i.e., f̃ uniformly approximates f∗ on K to
within error ϵ.

Proof. We decompose the total approximation error into four independent sources, each contributing
at most ϵ/4, which sum to give total error less than ϵ.

Error Source 1: Polynomial Approximation of f∗.

By Jackson’s theorem (a classical result in approximation theory), any Lf -Lipschitz function on a
din-dimensional domain with diameter D can be approximated by polynomials. Specifically, there
exists a polynomial Pm of total degree at most m such that:

Epoly(m) = sup
(X,A)∈K

∥f∗(X,A)− Pm(X,A)∥2 ≤ CJ
LfD

m2/din
(123)

where CJ > 0 is a universal constant depending only on the dimension. This bound captures the
curse of dimensionality: the required polynomial degree grows exponentially with dimension to
achieve the same approximation error.

To ensure Epoly(m) ≤ ϵ/4:

CJ
LfD

m2/din
≤ ϵ

4
=⇒ m2/din ≥ 4CJLfD

ϵ
=⇒ m ≥

(
4CJLfD

ϵ

)din/2

(124)

Error Source 2: Representing Polynomials via Multi-hop Aggregations.

A polynomial Pm(X,A) of total degree m in the entries of X and A can be written as:

Pm(X,A) =
∑

|β|+|γ|≤m

cβ,γ

∏
i,j

X
βij

ij

∏
k,ℓ

Aγkℓ

kℓ (125)
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where β = (βij) and γ = (γkℓ) are multi-indices, and |β| =
∑

i,j βij denotes the total degree in X.

Each monomial involving Ap (the p-th power of the adjacency matrix) can be expressed via the
p-hop propagation in GAMMA. The key observation is that (ApX)ij involves products of entries of
A and X, capturing p-hop paths.

Since ∥A∥ ≤ 1 (the operator norm of the normalized adjacency matrix is bounded by 1), powers
beyond K decay:

∥AK∥ ≤ ∥A∥K ≤ 1K = 1 (126)

However, if A has spectral radius slightly less than 1, say ρ(A) = 1 − δ for small δ > 0 (which
holds for many normalized adjacency matrices on connected graphs), then:

∥AK∥ ≤ (1− δ)K ≈ e−δK (127)

For δ = 1/n (a typical spectral gap), taking K = O(logn) ensures ∥AK∥ = O(1/n), making
contributions from hops p > K negligible.

More precisely, for a polynomial with coefficients {ap}, the error from truncating at hop K is:

Ehop(K) =

∥∥∥∥∥∥
∞∑

p=K+1

apA
pX

∥∥∥∥∥∥
2

≤

 ∞∑
p=K+1

|ap|∥Ap∥∥X∥

 ≤ ∥X∥
∞∑

p=K+1

|ap|(1− δ)p (128)

For coefficients decaying as |ap| ≤ Ce−p (typical for smooth functions), the tail sum is:

∞∑
p=K+1

|ap|(1− δ)p ≤ C

∞∑
p=K+1

e−p(1− δ)p = C
e−(K+1)(1− δ)K+1

1− e−1(1− δ)
(129)

For K = m+ ⌈log(4C∥X∥/(ϵδ))/δ⌉, we obtain Ehop(K) ≤ ϵ/4.

Error Source 3: Analytic Function Approximation (Softmax and Squashing).

The softmax function σ(b)p = exp(bp)/
∑

q exp(bq) and the squashing function are real analytic
(infinitely differentiable with convergent Taylor series). For bounded inputs, their Taylor expansions
converge uniformly on compact sets.

For softmax with inputs bounded by B (i.e., ∥b∥∞ ≤ B), the truncation error of the Taylor expansion
up to order M is: ∣∣∣∣∣∣σ(b)−

∑
|α|≤M

∂ασ(0)

α!
bα

∣∣∣∣∣∣ ≤ CσB
M+1

(M + 1)!
e(K+1)B (130)

where Cσ is a constant depending on the dimension K + 1.

In GAMMA, routing logits at iteration t satisfy:

|b(t)i,p| =

∣∣∣∣∣
t−1∑
τ=0

⟨Ĥ(p)
i ,v

(τ)
i ⟩

∣∣∣∣∣ ≤
t−1∑
τ=0

∥Ĥ(p)
i ∥∥v(τ)

i ∥ ≤ t (131)

since ∥Ĥ(p)
i ∥ = 1 (normalized) and ∥v(τ)

i ∥ ≤ 1 (squashing bounds the norm). After R iterations,
B = R.

To achieve error ϵ/4 from the softmax approximation:

CσR
M+1

(M + 1)!
e(K+1)R ≤ ϵ

4
(132)

Taking logarithms:

(M + 1) logR− log((M + 1)!) + (K + 1)R ≤ log
4

ϵ
− logCσ (133)
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Using Stirling’s approximation log(M !) ≈ M logM −M :

(M + 1) logR− (M + 1) log(M + 1) + (M + 1) + (K + 1)R ≤ log
4

ϵ
− logCσ (134)

Rearranging:

(M + 1)

[
log

R

M + 1
+ 1

]
+ (K + 1)R ≤ log

4

ϵ
− logCσ (135)

For practical choices of R (small, say R ≤ 5) and K = O(logn), solving for M yields:

M = O(R+ (K + 1)R+ log(1/ϵ)) = O(logn+ log(1/ϵ)) (136)

Since K = O(log n) and R is a small constant independent of n, M remains polynomial in log n
and log(1/ϵ).

Similarly, the squashing function γ(r) = r2/(1 + r2) is analytic for r ≥ 0. Its Taylor series around
r = 0 is:

γ(r) = r2 − r4 + r6 − · · · =
∞∑
k=1

(−1)k+1r2k (137)

For r ≤ 1 (which holds since ∥s(t)i ∥ ≤ 1 after normalization), the series converges rapidly. Truncating
at order O(log(1/ϵ)) terms gives error at most ϵ/8.

Total analytic approximation error: Eanalytic ≤ ϵ/4.

Error Source 4: Routing Convergence.

From Theorem 1, after R routing iterations, the representation is within distance:

∥v(R)
i − v∗

i ∥ ≤

√
Li

µi

(
1− µi

2Li

)R/2

∥v(0)
i − v∗

i ∥ (138)

Since ∥v(0)
i ∥ = ∥v∗

i ∥ ≤ 1 (bounded by squashing), the initial distance satisfies ∥v(0)
i − v∗

i ∥ ≤ 2
(triangle inequality). The diameter of K in terms of node representations is at most D by definition.

To ensure Erouting ≤ ϵ/4: √
Li

µi

(
1− µi

2Li

)R/2

· 2D ≤ ϵ

4
(139)

Taking logarithms:
R

2
log

(
1− µi

2Li

)
≤ log

ϵ

8D
√

Li/µi

(140)

Using log(1− x) ≈ −x for small x:

−R

2
· µi

2Li
≤ log

ϵ

8D
√
Li/µi

(141)

Solving for R:

R ≥ 4Li

µi
log

8D
√
Li/µi

ϵ
=

4Li

µi

[
log

D

ϵ
+

1

2
log

Li

µi
+ log 8

]
(142)

For bounded condition number κi = Li/µi = O(1) (which holds when hop embeddings are
well-conditioned), this simplifies to:

R = O

(
log

D

ϵ

)
(143)

Hidden Dimension Requirement.
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To represent all monomials in the polynomial Pm up to degree m, the hidden dimension must be
sufficient to capture all

(
din+m

m

)
possible monomials. By standard combinatorial estimates:(

din +m

m

)
≈ (din +m)m

m!
≈
(
e(din +m)

m

)m

(144)

For m = O((LfD/ϵ)din/2) and assuming din ≪ m (large degree regime):

dout = O(m) = O

((
LfD

ϵ

)din/2
)

(145)

Total Error.

Combining all four error sources:

∥f̃ − f∗∥∞ ≤ Epoly + Ehop + Eanalytic + Erouting ≤ ϵ

4
+

ϵ

4
+

ϵ

4
+

ϵ

4
= ϵ (146)

This establishes the universal approximation result with explicit parameter dependencies.

Remark 1. The parameter scalings in Theorem 4 exhibit the curse of dimensionality through dout =
O(ϵ−din/2), which is inherent to approximating arbitrary Lipschitz functions in high dimensions
and cannot be avoided by any architecture. However, the number of hops K = O(log n) grows
only logarithmically with the graph size n, and the routing iterations R = O(log(1/ϵ)) grow
logarithmically with the desired accuracy ϵ, making GAMMA practically efficient. In typical GNN
applications where din is moderate (tens to hundreds), and we only require approximation accuracy
ϵ ∼ 0.01 (reasonable for classification tasks with finite precision), these requirements remain
manageable on standard hardware.

F On the Hardware Efficiency of GAMMA

Modern GPU architectures are designed to maximize throughput for dense matrix operations, yet
Graph Neural Networks present unique computational challenges that systematically underutilize
available hardware resources. The fundamental tension arises from the mismatch between the spatial
locality assumptions inherent in GPU memory hierarchies and the irregular memory access patterns
induced by graph-structured data. In this section, we provide a rigorous analysis of GAMMA’s
hardware efficiency, demonstrating how its architectural choices, particularly weight sharing, dynamic
routing with fixed dimensionality, and the strategic elimination of feature concatenation, translate
to measurable improvements in memory bandwidth utilization, cache hierarchy exploitation, and
sustained computational throughput. We ground our analysis in the memory subsystem design of
contemporary datacenter GPUs and establish theoretical bounds on the performance of multi-hop
heterophilic architectures, contrasting GAMMA’s design with representative approaches such as
MixHop [1] and H2GCN [40].

Notation. Throughout this section, we employ the following notation to facilitate clarity and
precision in our hardware efficiency analysis.

Graph and Architecture Parameters: Let N ∈ N denote the number of nodes in the input graph,
K ∈ N represent the maximum hop distance considered in multi-hop aggregation (so the total number
of hops is K + 1, including the 0-hop self-connection), din ∈ N denote the input feature dimension,
dout ∈ N denote the output feature dimension, and d ∈ N represent a generic feature dimension when
din = dout.

Graph Data Structures: We denote the adjacency matrix as A ∈ RN×N , where entry Aij represents
the connection weight from node j to node i (we use Ak to denote the k-hop adjacency matrix,
with A0 = I being the identity matrix), the input node feature matrix as X ∈ RN×din , where
row Xi contains the features for node i, and weight matrices as W(k) ∈ Rdin×dout for hop-specific
transformations (MixHop, H2GCN) or W ∈ Rdin×dout for the shared transformation in GAMMA.

Hardware Specifications: For a representative GPU (NVIDIA A100 80GB), we denote NSM = 108
as the number of Streaming Multiprocessors, CL2 = 40 MB as the capacity of the shared L2 cache,
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Bmem = 2,039 GB/s as the memory bandwidth from HBM2e to the GPU, RSM = 65,536 as the
number of 32-bit registers per SM, and Fpeak = 19.5 TFLOPS as the peak floating-point throughput
for FP32 operations.

Performance Metrics: Let I (measured in FLOPs/byte) denote the computational intensity of an
operation (ratio of floating-point operations to bytes transferred from main memory), P denote
achievable performance (measured in FLOPS), Iridge denote the ridge point operational intensity (the
threshold where compute and memory bandwidth constraints balance), β = 4 bytes represent the
storage requirement for a single FP32 element, and ρ denote the bandwidth efficiency ratio comparing
GAMMA to concatenation-based architectures.

Memory and Latency Metrics: We use M with various subscripts to denote memory footprints
(measured in bytes): Mconcat for concatenation-based architectures, Mfixed for fixed-dimensionality
architectures, Mrouting for GAMMA’s routing state, and MGAMMA for GAMMA’s total memory
consumption. For latencies (measured in cycles unless otherwise specified), we denote τDRAM ≈ 400
cycles as DRAM access latency, τL2 ≈ 200 cycles as L2 cache access latency, and τlaunch as the
CPU-side kernel launch latency (typically 5–20 microseconds).

Data Movement Metrics: Let D with various subscripts denote data movement (measured in bytes):
Dmin for the theoretical minimum data movement, Dconcat for concatenation-based architectures,
DGAMMA for GAMMA’s data movement, Dunfused for unfused kernel data traffic, and Dfused for fused
kernel data traffic. We denote Bused as the bandwidth consumed by a layer, Beff as the effective
bandwidth under cache behavior, and Bcache as the effective bandwidth when serving from cache.

Execution Time Metrics: Let tlayer denote the execution time for a single layer, T with various
subscripts denote total execution times: Toverhead for accumulated kernel launch overhead, Ttotal_overhead
for overhead across training, Trouting for routing computation time, TGAMMA for GAMMA’s total
execution time, TMixHop for MixHop’s execution time, and TH2GCN for H2GCN’s execution time.

Training Parameters: Let L ∈ N denote the number of layers in the model, E ∈ N denote the number
of training epochs, and B ∈ N denote the number of batches per epoch.

Routing Mechanism Parameters: For GAMMA’s routing, we use Titer ∈ N to denote the number
of routing iterations, t to index routing iterations where t ∈ {0, 1, . . . , Titer − 1}, Hk ∈ RN×dout to
denote embeddings at hop k, H̃k ∈ RN×dout to denote normalized hop embeddings, z(t)i ∈ Rdout to
denote node i’s routing state at iteration t, h̃ik ∈ Rdout to denote the normalized embedding for node i
at hop k, a(t)ik ∈ R to denote the agreement score between node i’s routing state and hop k at iteration
t, and w

(t)
ik ∈ [0, 1] to denote the normalized routing weight for node i and hop k at iteration t (where∑K

k=0 w
(t)
ik = 1).

Additional Parameters: We denote µ ∈ [0, 1] as the cache miss rate, W = 32 as the warp size
(number of threads executing in lockstep), ϵ > 0 as a small constant to prevent division by zero in
normalization, γfusion as the fusion efficiency factor, Ptotal as the total parameter count, Si as the size
of intermediate tensor i, nops as the number of operations in a sequence, and

⊕
as the concatenation

operator along the feature dimension.

F.1 The Memory Wall in GPU-Accelerated Graph Learning

To understand GAMMA’s efficiency gains, we must first examine the fundamental bottleneck in
modern GPU computing: the memory hierarchy and its implications for data movement. Consider
a representative datacenter GPU such as the NVIDIA A100 80GB, which features NSM = 108
Streaming Multiprocessors, a shared L2 cache of capacity CL2 = 40 MB, and memory bandwidth
Bmem = 2,039 GB/s from HBM2e memory [26]. Each SM contains a register file of RSM = 65,536
32-bit registers and shares access to the unified L2 cache, which serves as the coherence point
for all device memory transactions [15]. The critical observation is that despite the GPU’s peak
floating-point throughput of Fpeak = 19.5 TFLOPS for standard FP32 operations, the achievable
performance for many deep learning workloads is constrained not by computational capacity but by
memory bandwidth, the rate at which data can traverse the memory hierarchy from DRAM through
cache to compute units.

The Roofline Model [35] provides the theoretical framework for understanding this constraint. For
an operation with computational intensity I (measured in FLOPs per byte transferred from main
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memory), the achievable performance P is fundamentally bounded by:

P = min (Fpeak, Bmem · I) . (147)

The ridge point, where compute and memory bandwidth constraints intersect, occurs at operational
intensity:

Iridge =
Fpeak

Bmem
≈ 19.5× 1012

2.039× 1012
≈ 9.6 FLOPs/byte. (148)

Operations with I < Iridge are memory-bound, meaning performance is fundamentally limited by data
movement rather than arithmetic throughput. Unfortunately, the sparse-dense matrix multiplications
and neighborhood aggregations central to GNN computation exhibit low operational intensity, placing
them squarely in this regime. The situation is further exacerbated by the irregular memory access
patterns inherent in graph structures, which violate the spatial and temporal locality assumptions that
modern cache hierarchies are designed to exploit. When neighbor indices are scattered throughout
memory, cache lines (typically 128 bytes) are incompletely utilized, and hardware prefetchers, which
predict future memory accesses based on observed patterns, fail to provide timely data delivery. This
architectural mismatch between algorithm and hardware is the fundamental source of inefficiency in
naive GNN implementations.

F.2 Architectural Inefficiencies in Multi-Hop Heterophilic GNNs

Multi-hop heterophilic architectures attempt to capture long-range dependencies by aggregating
information across multiple hop distances. However, the implementation strategies employed by
architectures such as MixHop [1] and H2GCN [40] introduce systematic inefficiencies that fun-
damentally limit their scalability. These inefficiencies manifest at multiple levels of the memory
hierarchy and arise from design decisions that, while algorithmically motivated, have profound
negative consequences for hardware utilization.

F.2.1 The Hidden Cost of Feature Concatenation

MixHop computes multi-hop representations as:

ZMixHop =

K⊕
k=0

(
AkXW(k)

)
, (149)

where
⊕

denotes concatenation along the feature dimension, A ∈ RN×N represents the adjacency
matrix, X ∈ RN×din contains input features, and W(k) ∈ Rdin×dout are hop-specific weight matrices.
For K + 1 hops, each producing embeddings of dimension dout, the concatenated representation
has dimension (K + 1)dout. This design choice, while straightforward algorithmically, introduces
a cascade of inefficiencies throughout the memory hierarchy that severely impact both memory
consumption and computational throughput.

The memory footprint grows linearly with the number of hops. Let β = 4 bytes represent the
storage requirement for a single FP32 element. The total memory required for intermediate hop
representations and the final concatenated output is:

Mconcat = βN

K∑
k=0

dout + βN(K + 1)dout = βNdout(2K + 2). (150)

In contrast, a fixed-dimensionality architecture that maintains dout throughout requires only Mfixed =
βNdout, yielding a memory expansion factor of 2K + 2. For typical configurations with K = 2,
this represents a sixfold increase in memory consumption. The ramifications extend beyond mere
capacity: when the working set size exceeds the L2 cache capacity CL2, intermediate results must be
evicted to DRAM, triggering expensive round-trips with latencies of τDRAM ≈ 400 cycles, compared
to τL2 ≈ 200 cycles for L2 cache access [24]. Consider a graph with N nodes where K = 2 and
dout = d. The concatenated features require memory:

Mconcat(N,K, d) = βN(K + 1)d = 3βNd, (151)

which must fit within CL2 to avoid DRAM traffic. For the A100 with CL2 = 40 MB, this constrains
Nd < 3.33× 106, a threshold easily exceeded by real-world graphs.
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More critically, concatenation forces the materialization of intermediate results in global memory,
violating temporal locality and preventing kernel fusion opportunities. Modern deep learning frame-
works achieve high performance through kernel fusion [2], where consecutive operations are merged
into a single GPU kernel to eliminate intermediate memory transactions. A fused kernel can maintain
data in registers (latency ≈ 1 cycle) or shared memory (latency ≈ 30 cycles) throughout a sequence
of operations, whereas unfused operations must write to and read from global memory between each
step. Concatenation creates a hard data dependency that prevents fusion of downstream operations,
as the concatenated tensor must be fully materialized before subsequent layers can proceed. Each
concatenation incurs data movement of (K + 1)Ndoutβ bytes, consuming memory bandwidth that
could otherwise be allocated to computation. For a graph with N nodes, this bandwidth consumption
is:

Bused =
(K + 1)Ndoutβ

tlayer
, (152)

where tlayer represents the layer execution time. When Bused approaches Bmem, the architecture
becomes bandwidth-limited, with compute units stalled waiting for data.

F.2.2 Parameter Proliferation and Memory System Implications

Beyond concatenation, MixHop and H2GCN employ separate weight matrices W(k) ∈ Rdin×dout for
each hop k ∈ {0, 1, . . . ,K}, introducing a total parameter count of:

Ptotal = (K + 1)dindout. (153)

While parameter count itself is often not a limiting factor for modern GPUs, the computational
implications are significant. Each hop requires a separate matrix multiplication kernel launch,
incurring (K + 1) kernel launch overheads. The CPU-side kernel launch latency, denoted τlaunch, is
typically in the range of 5–20 microseconds depending on API calls and driver state [28]. For K + 1
hops, the accumulated overhead is:

Toverhead = (K + 1)τlaunch. (154)

While this overhead may appear negligible for individual layers, it compounds across layers and
training iterations. For a model with L layers trained over E epochs with B batches per epoch, the
total overhead accumulates to:

Ttotal_overhead = L · E ·B · (K + 1)τlaunch. (155)

More insidiously, separate weight matrices residing at distinct memory addresses disrupt the operation
of hardware prefetchers. Modern GPUs employ sophisticated prefetching logic that detects sequential
or strided access patterns and preemptively loads data into cache before explicit requests. When
weight matrices are scattered throughout memory, access patterns appear random from the prefetcher’s
perspective, leading to cache misses and memory stalls. The effective memory bandwidth Beff under
poor prefetching is related to the cache miss rate µ by:

Beff = Bmem · (1− µ) +Bcache · µ, (156)

where Bcache ≪ Bmem represents the effective bandwidth when serving from cache. High miss rates
µ significantly degrade Beff, throttling computational throughput.

F.3 GAMMA’s Architectural Co-Design for Hardware Efficiency

GAMMA addresses these systemic inefficiencies through principled algorithmic and architectural
co-design. The architecture’s efficiency stems from three core design principles: weight sharing with
unified transformation to maximize parameter reuse, dynamic routing with fixed dimensionality to
preserve cache locality, and elimination of explicit concatenation to enable kernel fusion.

F.3.1 Weight Sharing: Memory Reuse and Cache Coherence

GAMMA employs a single shared weight matrix W ∈ Rdin×dout to transform input features exactly
once:

Hproj = XW. (157)
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All subsequent multi-hop propagations operate on these projected features:

Hk = AkHproj, k ∈ {0, 1, . . . ,K}, (158)

where A0 = I represents the identity. This seemingly minor architectural decision has profound
implications for hardware efficiency. The parameter count reduces to:

PGAMMA = dindout, (159)

representing a reduction factor of (K + 1) compared to architectures with per-hop weights. More
critically, the single matrix multiplication kernel launch eliminates (K + 1)− 1 launches, reducing
overhead to τlaunch regardless of K.

The architectural advantages extend deeper into the memory subsystem. By repeatedly accessing
the same weight matrix across all hops, GAMMA maximizes cache reuse. Once W is loaded into
L2 cache, subsequent accesses are served with latency τL2 rather than τDRAM. The cache hit rate for
weight matrix accesses approaches unity, as the matrix remains resident throughout the multi-hop
computation. Furthermore, the single, contiguous memory allocation enables hardware prefetchers
to establish clear access patterns, preloading cache lines ahead of computation. The operational
intensity for the shared transformation phase is:

Itransform =
2Ndindout

(Ndin + dindout +Ndout)β
, (160)

where the numerator counts FLOPs (each element requires a dot product of length din) and the
denominator accounts for bytes transferred (input features, weights, output features). For typical
dimensions where N ≫ din, dout, this simplifies to:

Itransform ≈ 2dindout

(din + dout)β
. (161)

For din = dout = d, we obtain Itransform ≈ d/(2β), which grows linearly with feature dimension. For
moderate d ≥ 64, this operational intensity approaches or exceeds Iridge, transitioning the computation
from memory-bound to compute-bound regime where GPU arithmetic units are fully utilized.

F.3.2 Fixed-Dimensionality Dynamic Routing: Preserving the Working Set

GAMMA’s dynamic routing mechanism computes adaptive combinations of multi-hop embeddings
while maintaining fixed output dimensionality. Given hop-specific embeddings {Hk}Kk=0 where
Hk ∈ RN×dout , the routing mechanism computes normalized embeddings:

H̃k =
Hk

∥Hk∥2 + ϵ
, k ∈ {0, 1, . . . ,K}, (162)

where normalization operates row-wise and ϵ prevents division by zero. The iterative routing process
computes agreement scores between each node’s current representation z

(t)
i and candidate hops:

a
(t)
ik = ⟨z(t)i , h̃ik⟩, (163)

followed by softmax normalization:

w
(t)
ik =

exp(a
(t)
ik )∑K

j=0 exp(a
(t)
ij )

, (164)

and weighted aggregation:

z
(t+1)
i =

K∑
k=0

w
(t)
ik h̃ik. (165)

The critical architectural insight is that all intermediate representations z(t)i maintain constant dimen-
sion dout throughout routing iterations. The memory footprint for routing state is:

Mrouting = βNdout · (K + 2), (166)
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accounting for K + 1 hop embeddings plus the current routing state. This contrasts sharply with
concatenation-based approaches where memory grows as (2K + 2)βNdout. For graphs where
Mrouting < CL2, the entire routing computation can proceed with all data resident in L2 cache,
eliminating DRAM traffic. The routing iterations involve primarily element-wise operations (dot
products, exponentials, multiplications) on vectors of length K + 1, which exhibit high arithmetic
intensity and minimal memory traffic. Each routing iteration requires approximately:

Trouting = Tdot + Tsoftmax + Taggregate, (167)

where each component scales as O(NK) with small constants. The softmax over K + 1 elements
per node is efficiently parallelized across thread blocks, with each warp handling multiple nodes
simultaneously. Critically, the fixed dimensionality enables the entire routing loop to be fused into a
single GPU kernel, maintaining all state in fast memory (shared memory or registers) throughout
iterations. This fusion eliminates (T − 1) kernel launches for T routing iterations and prevents
intermediate memory transactions.

F.3.3 Kernel Fusion and Memory Traffic Reduction

The elimination of explicit concatenation enables aggressive kernel fusion throughout GAMMA’s
forward and backward passes. Consider the sequence of operations in a single layer: initial trans-
formation, multi-hop propagation, normalization, and routing. In concatenation-based architectures,
each operation requires separate kernel launches with intermediate results materialized in global
memory. The memory traffic for this sequence is:

Dunfused =

nops∑
i=1

Si · (readsi + writesi), (168)

where Si represents the size of intermediate tensor i and each operation i requires reading its inputs
and writing its outputs. In a fused kernel, intermediate values remain in fast memory, reducing traffic
to:

Dfused = Sinput + Soutput, (169)
representing only the initial inputs and final outputs. The traffic reduction factor is:

γfusion =
Dunfused

Dfused
=

∑nops
i=1 Si · (readsi + writesi)

Sinput + Soutput
. (170)

For typical deep learning operations with multiple intermediate tensors, γfusion ranges from 2 to
10, directly translating to speedup when memory-bound. GAMMA’s architecture maximizes fu-
sion opportunities by maintaining fixed tensor dimensions and eliminating operations that force
materialization.

Furthermore, the normalized dot-product agreement mechanism in Eq. (163) exhibits excellent
vectorization properties. Modern GPUs execute operations in warps of W = 32 threads that execute
in lockstep (SIMD fashion). Dot products over vectors of length dout can be efficiently parallelized
using warp-level reduction primitives, achieving near-peak throughput. The absence of conditional
branches or data-dependent control flow ensures full warp utilization without divergence penalties.
When threads within a warp execute different code paths (divergence), all paths must be serialized,
degrading throughput by up to W -fold. GAMMA’s routing mechanism, being purely data-parallel
with uniform control flow, avoids this pathology entirely.

F.4 Theoretical Memory Bandwidth Bounds

We now establish formal bounds on the memory bandwidth requirements for multi-hop GNN
architectures and demonstrate that GAMMA operates near the theoretical minimum. Consider a
multi-hop GNN layer processing a graph with N nodes, K + 1 hops, input dimension din, and
output dimension dout. The fundamental operations are: (1) feature transformation, (2) multi-hop
propagation, and (3) aggregation. The minimum data movement, assuming perfect cache behavior
and no recomputation, is:

Dmin = β(Ndin + dindout +Ndout), (171)
representing reading input features, reading weights, and writing output features. Any architecture
must satisfy D ≥ Dmin.
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For concatenation-based architectures, the actual data movement includes reading input features,
reading (K + 1) weight matrices, writing (K + 1) intermediate hop results, reading these for
concatenation, and writing the concatenated result:

Dconcat = β
(
Ndin + (K + 1)dindout

+ (K + 1)Ndout + (K + 1)Ndout

+ (K + 1)Ndout
)
.

(172)

Simplifying:
Dconcat = β

(
Ndin + (K + 1)dindout + 3(K + 1)Ndout

)
. (173)

For GAMMA with weight sharing and fixed dimensionality, the data movement is:

DGAMMA = β
(
Ndin + dindout + (K + 1)Ndout +Ndout

)
, (174)

accounting for reading inputs, reading the single weight matrix, writing and reading hop embeddings
(routing operates in-place on normalized copies), and writing the final output. The bandwidth
efficiency ratio is:

ρ =
DGAMMA

Dconcat
=

Ndin + dindout + (K + 2)Ndout

Ndin + (K + 1)dindout + 3(K + 1)Ndout
. (175)

In the regime where N ≫ din, dout (typical for large graphs), the weight matrix terms become
negligible:

ρ ≈ din + (K + 2)dout

din + 3(K + 1)dout
. (176)

For din = dout = d and K = 2:

ρ ≈ 5d

10d
= 0.5, (177)

demonstrating that GAMMA achieves approximately 2× reduction in memory bandwidth consump-
tion compared to concatenation-based approaches. This bandwidth efficiency directly translates to
runtime improvement in the memory-bound regime, as execution time is inversely proportional to
effective bandwidth utilization.

F.5 Empirical Validation and Architectural Insights

The theoretical efficiency gains manifest in measured performance on real hardware. Our experiments
on the Flickr dataset (N = 89,250 nodes) demonstrate that GAMMA achieves total execution time
(forward plus backward pass) of TGAMMA = 23.17 ms with memory footprint MGAMMA = 480.60
MB. In contrast, MixHop requires TMixHop = 115.68 ms (5.0× slower) with MMixHop = 1,965.30 MB
(4.1× larger), and H2GCN requires TH2GCN = 463.89 ms (20.0× slower) with MH2GCN = 1,993.90
MB (4.1× larger). These measurements validate our theoretical analysis: the 4-5× memory reduction
aligns with predictions from Eq. (175), and the runtime improvements reflect both reduced memory
traffic and kernel launch overhead elimination.

The architectural implications extend beyond raw performance metrics. GAMMA’s design phi-
losophy, prioritizing algorithmic choices that align with hardware execution models, represents
a departure from the prevailing trend of increasing architectural complexity to capture graph het-
erophily. Rather than expanding feature dimensions or introducing intricate attention mechanisms,
GAMMA achieves adaptivity through a lightweight routing process that maps efficiently onto GPU
execution units. The normalized dot-product agreement computation vectorizes naturally, the softmax
operation parallelizes across nodes, and the weighted aggregation fuses with downstream opera-
tions. This hardware-algorithm co-design demonstrates that sophisticated functionality need not
sacrifice efficiency; indeed, by respecting the constraints of the memory hierarchy and the parallelism
model of GPUs, GAMMA achieves both greater expressiveness and superior performance relative to
architectural approaches that ignore these fundamental constraints.

The lesson for future GNN architecture design is clear: algorithmic innovation must be pursued
in concert with hardware considerations. Choices that appear benign from a purely mathematical
perspective, concatenation, separate weight matrices, expanding dimensionality, carry hidden costs
that accumulate throughout the memory hierarchy. By contrast, designs that maintain fixed working
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set sizes, maximize parameter reuse, enable kernel fusion, and exploit vectorization opportunities
achieve superior efficiency without compromising model capacity. GAMMA exemplifies this princi-
ple, demonstrating that careful architectural co-design enables heterophilic graph learning at scale on
commodity hardware.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the paper’s main contributions:
(1) a gated multi-hop message passing mechanism that adaptively leverages multi-hop
neighborhood information based on node-specific heterophilic patterns, (2) a weight sharing
scheme that reduces memory overhead while preserving global heterophilic information,
and (3) experimental results showing GAMMA matches or exceeds SOTA heterophilic
GNN accuracy while achieving up to 20× faster inference. These claims are supported by
the empirical results in Section 5 and the theoretical analysis in Sections 3-4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper briefly discusses limitations in the conclusion section: GAMMA’s
current fixed routing iteration count may be suboptimal for nodes with varying neighborhood
complexities, and extremely large graphs may require further optimizations to the gating
mechanism. Additionally, while our dot-product agreement measure works well in practice,
more sophisticated routing strategies might better capture particularly complex heterophilic
relationships. While not in a dedicated section, the paper acknowledges key technical
limitations related to routing iterations, scalability to extremely large graphs, and potential
for more sophisticated agreement measures.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper focuses on the empirical effectiveness of the GAMMA approach
for node classification in heterophilic graphs rather than developing theoretical guarantees.
The work emphasizes practical performance, computational efficiency, and experimental
validation across diverse benchmark datasets, without relying on theoretical proofs as part
of its core contributions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides comprehensive information for reproducing the main
experimental results. Section 4 describes the GAMMA architecture in detail, with complete
pseudocode provided in Algorithm 1 in the Appendix. The experimental setup is thoroughly
documented in Section 5, including implementation details (PyTorch Geometric, NVIDIA
RTX A2000 GPU, CUDA 12.8), model architecture specifications (two GNN layers with
hidden dimension size of 32), hyperparameter optimization process (grid search over learning
rates in 0.05, 0.01, 0.002 and dropout rates in 0.0, 0.5), training protocol (500 epochs), and
evaluation methodology (10 splits with specified ratios). All datasets are clearly listed with
their properties in Table 1, and baseline models are properly referenced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code implementing GAMMA and scripts to reproduce all experimental
results will be made publicly available and provided to the conference. All datasets used
in our experiments are standard benchmark datasets (Cora, CiteSeer, PubMed, Texas,
Wisconsin, Actor, Squirrel, Chameleon, Cornell) that are publicly available through the
PyTorch Geometric library, which is properly cited in the paper. The implementation is
based on the detailed algorithm description in Section 4 and the complete pseudocode in
Algorithm 1, with all experimental settings documented in Section 5.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides comprehensive experimental details in Section 5. It
specifies the architecture configuration (two GNN layers with hidden dimension size of
32), hyperparameter optimization process (grid search over learning rates in 0.05, 0.01,
0.002 and dropout rates in 0.0, 0.5), training protocol (500 epochs), and model selection
criteria (best validation performance). Data splitting procedures are clearly described for
both heterophilic datasets and homophilic datasets. Implementation framework (PyTorch
Geometric) and hardware specifications (NVIDIA RTX A2000 GPU with CUDA 12.8) are
also documented, providing sufficient detail to understand and contextualize the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports standard deviations as error bars for all classification
accuracy results in Table 1, calculated across 10 different data splits for each dataset. The
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methodology for obtaining these statistics is clearly described in Section 5 (Evaluation). The
evaluation methodology follows established practices in the field and is properly cited in the
evaluation section. This approach captures variability across different data splits, providing
a reliable measure of model robustness.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides detailed information on compute resources in Section 5. It
specifies that experiments were conducted on "a desktop machine equipped with an NVIDIA
RTX A2000 GPU (12GB VRAM)" using "CUDA 12.8" for GPU acceleration. The paper
also presents comprehensive resource utilization metrics in Figure 5, comparing memory
consumption and execution time across all models. For GAMMA specifically, it reports
"a total execution time (backward + forward pass) of 23.17 ms and a memory footprint of
480.60 MB." The performance benchmarks are detailed for all 13 baseline models, providing
a clear picture of the relative computational requirements for reproducing the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research in this paper conforms with the NeurIPS Code of Ethics. The
work uses public benchmark datasets with proper attribution, presents transparent and
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statistically sound evaluations, and focuses on improving computational efficiency of graph
neural networks without raising ethical concerns. The algorithms and models proposed do
not pose risks related to privacy, bias, or potential misuse. The research aims to make graph
neural networks more computationally efficient and effective on heterophilic graphs, which
aligns with ethical considerations regarding responsible resource usage in machine learning
research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper does not explicitly discuss societal impacts. This work is primarily
foundational machine learning research focused on improving computational efficiency
and effectiveness of graph neural networks for heterophilic graphs. While not discussed in
the paper, potential positive impacts include reduced computational resource requirements
(benefiting researchers with limited resources and reducing energy consumption) and en-
abling more effective modeling in areas like fraud detection networks. The research does
not present direct negative societal impacts as it focuses on algorithmic improvements rather
than specific applications, though as with any ML advancement, applications built with
these methods should be evaluated for potential biases or misuse in specific downstream
contexts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper presents an algorithm for graph neural networks that poses no
particular risk for misuse. The research uses standard benchmark datasets that are already
publicly available and does not involve high-risk technologies such as language models,
image generators, or scraped datasets. The proposed method is an algorithmic advancement
focused on efficiency and effectiveness of graph neural networks for heterophilic graphs,
without introducing technologies that would require specific safeguards against misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [No]

Justification: While the paper properly credits creators by citing the original papers for
datasets (Cora, CiteSeer, PubMed, etc.) and software tools (PyTorch Geometric, CUDA),
it does not explicitly mention the specific licenses (MIT, Apache, etc.) under which these
assets are available. The paper appropriately references all baseline models through citations
to their original papers, but does not include license information for any of these resources.
Although these are standard academic benchmarks and publicly available frameworks
commonly used in the research community, explicitly stating their licenses would improve
completeness and transparency.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new GNN architecture (GAMMA) which is thoroughly
documented within the paper itself. Section 4 provides a detailed description of the GAMMA
method, Section 5 gives implementation details, and the Appendix includes comprehensive
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pseudocode in Algorithm 1 that outlines the full forward pass process. This documentation
is sufficient for implementing the method. Additionally, as mentioned in previous responses,
code implementing GAMMA will be made available and provided to the conference with
appropriate documentation to facilitate reproducibility and usage by other researchers.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.
The research focuses on developing and evaluating graph neural network algorithms on
standard benchmark datasets. All experiments were computational in nature, testing the
proposed GAMMA approach against baseline methods on publicly available graph datasets,
without any human participant involvement.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This research does not involve human subjects. The paper presents algorithmic
research on graph neural networks with experiments conducted exclusively on standard
benchmark datasets. No human participants were involved in any aspect of the study, so
IRB approval was not required or applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

51



• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any component of the methodology.
The paper focuses entirely on graph neural networks for heterophilic graphs, specifically
introducing the GAMMA method that employs a gating mechanism for multi-hop mes-
sage passing. No language models were used in developing the approach or conducting
experiments.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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