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Abstract
Sparse Matrix Dense Matrix Multiplication (SpMM) is a fundamen-

tal computation kernel across various domains, including scientific

computing, machine learning, and graph processing. Despite ex-

tensive research, existing approaches optimize SpMM using loop

transformations and linear algebra principles, which (1) poorly han-

dle unstructured sparsity patterns, (2) rely on empirical methods to

explore data reuse opportunities, and (3) enforce rigid coordinate

alignment, compromising data locality.

In this paper, we demonstrate that these limitations stem from

the fundamental matrix representation and traditional dataflows of

SpMM (e.g., inner-product, outer-product, and Gustavson). We pro-

pose Aquila, a graph transformation framework that reformulates

SpMM computations as a graph optimization problem, leveraging

graph theory to reinterpret tiling and dataflow. First, on the theo-

retical side, we introduce vertex decomposition and adaptive depth

traversal (ADT) to enable non-contiguous tiling, where nonzero

elements from discontinuous rows and columns are clustered by

connectivity rather than following matrix dimensionality. This ap-

proach quantifies data reuse and improves data locality beyond tra-

ditional loop transformationswhilemaintaining output equivalence.

Second, on the algorithm side, we develop a pull-after-push (PaP)

dataflow that simultaneously enhances the dense matrix data reuse

while eliminating synchronization issues in output matrix accumu-

lation. Third, building on our theoretical approach and dataflow, we

present a versatile accelerator architecture that handles a variety

of SpMM kernels with diverse data sizes and sparsity patterns in a

unified architecture. Additionally, we introduce a bidirectional fiber

tree (BFT) format to support the proposed graph-oriented dataflow

in contrast to traditional column or row-major access. Evaluation

across diverse sparse datasets shows Aquila achieves speedups of

4.3×, 3.4×, 3.7×, 2.9×, and 2.7× in execution time and up to 4.8×
∗
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1 Introduction
Sparse Matrix Dense Matrix Multiplication (SpMM) is a critical com-

putation kernel in numerous domains such as machine learning and

scientific computing [2, 5, 6, 18, 20, 40–42, 45, 66]. For example, in

Graph Neural Networks [35], a sparse matrix is used to represent

the graph connectivity, with nonzero elements indicating connec-

tions between pairs of vertices [33, 58, 62]. While such sparse data

representation can be leveraged to eliminate unnecessary compu-

tations and reduce storage overheads, the irregular data patterns

pose challenges to data locality and computation regularity.

Prior work [1, 8, 57, 63, 64] has employed conventional loop

transformation techniques to optimize data reuse and parallelism

in SpMMs. However, these techniques rely on dense linear algebra,

which fails to accurately capture data reuse within unstructured

sparse patterns. For example, inner [21, 22, 47] and row-wise prod-

uct [34, 50, 67] (i.e., pull-based dataflow) have been used to improve

the data reuse of the output matrix, where multiple blocks of the

input matrix are simultaneously retrieved to generate a single block

of the output matrix. However, the data reuse for the dense in-

put matrix remains suboptimal because of the unstructured sparse

matrix. Additionally, accumulating partial results of the output ma-

trix imposes strict synchronization requirements. Outer-product

dataflow [44, 69] (i.e., push-based dataflow) enhances the data reuse

of input dense matrix but may reduce the reuse efficiency of the

output matrix. However, current dataflows cannot simultaneously

optimize data reuse of dense matrices while avoiding the synchro-

nization issue. This limitation is primarily due to the loop-based

representation of dataflows.

Moreover, significant research [3, 28, 32, 36, 61] aimed to regu-

larize the sparse matrices by leveraging matrix reordering or con-

densing nonzero elements. However, reordering the distribution of

nonzero elements in matrix representation has been proven to be

an NP-hard problem [3, 31], and the resulting solutions are specific
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for m in M:
    for n in N:
        for k in K:
            C[n,m] += A[n,k] * B[k,m]

for k in K:
    for m in M:
        for n in N:
            C[n,m] += A[n,k] * B[k,m]

for m in M:
    for k in K:
        for n in N:
            C[n,m] += A[n,k] * B[k,m]
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Figure 1: Traditional matrix-based dataflows and their corresponding graph representations.
to a given sparsity pattern. In addition, while graph clustering algo-

rithms, such as I-GCN [15] and GCoD [65], can enhance the density

in specific matrix regions, efficient data reuse ultimately depends on

the tiling strategy and dataflow design. For example, several well-

known sparse matrix reordering algorithms, including RCM [37],

column approximate minimum degree ordering [9], graph islandiza-

tion [15], and column permutation based on nonzero counts [24],

are only applicable to a certain sparsity pattern or application. Con-

densing and repositioning nonzero elements [11, 68, 69] at runtime

can effectively balance the workload, but disrupting the coordinate

information can lead to irregular dependencies with prohibitive

synchronization overheads. Furthermore, adaptive tiling [34] is ef-

fective for balancing the quantity of nonzero elements across matrix

partitions, but varying matrix dimensions could in turn affect the

data locality of dense matrices.

In this paper, we argue that the fundamental issue of existing

SpMM optimizations results from their matrix representation. The

linear representation of SpMMs is theoretically ineffective in ana-

lyzing and identifying the optimal data reuse and parallelism op-

portunities. As opposed to matrix representation, our key idea is

to use graph representation to analyze the relationship between

nonzero elements rather than where they are indexed. Upon this

central idea, we propose a graph transformation framework for

designing efficient SpMM accelerators.

Specifically, this paper makes the following contributions:

• On the theory side, we repurpose graph transformation to

rethink matrix tiling and dataflow, wherein the SpMM kernel

is abstracted as a graph. We introduce vertex decomposition

and adaptive depth traversal, which permit non-contiguous

tiling, grouping nonzero elements from rows and columns

that are not consecutive in their indices. This serves as a

theoretical foundation to quantify and enhance inter- and

intra-tile data reuse while retaining the mathematical equiv-

alence to matrix representation.

• On the algorithm side, we propose a graph-oriented dataflow

to enhance data reuse. Specifically, we propose a parent-

and-child aggregation dataflow, resulting from the proposed

vertex decomposition, to increase the data reuse between

matrix partitions. Additionally, we propose a pull-after-push

dataflow, as opposed to the current push-based (outer-product)

or pull-based (inner and row-wise product) model, to in-

crease the data reuse of both input and output dense matri-

ces while avoiding the synchronization issue in partial sum

accumulation.

• On the architecture side, backed by our framework and

dataflow, we propose a versatile accelerator architecture that

can efficiently handle various SpMM kernels with varying

data sizes and sparsity patterns. Specifically, We introduce a

new sparse data compression format, bidirectional fiber tree

(BFT), to support graph-oriented dataflows, dedicated pro-

cessing logic to enable dynamic vertex decomposition and

adaptive depth traversal, and a unified architecture that de-

couples inter- and intra-tile computation into a child-parent

aggregator and customized processing element (PE) engine.

We conduct a detailed performance and energy evaluation through

simulation and show that the proposed accelerator achieves 4.3×,
3.4×, 3.7×, 2.9×, and 2.7× reductions in execution time when com-

pared to state-of-the-art-accelerators, Sextans [49], SPADE [17],

HotTiles [16], ReGNN [7] and I-GCN [15], respectively. Aquila can

further achieve up to 4.8× improvements in energy efficiency.

2 Background and Motivation
2.1 SpMM Dataflows
There are several dataflowmodels to compute SpMMkernels [15, 21,

33, 38], each offering distinct tradeoffs based on sparsity structure

and reuse opportunities. Given a sparse matrix 𝐴 ∈ R𝑁×𝐾 , a dense
matrix 𝐵 ∈ R𝐾×𝑀 , and the output𝐶 ∈ R𝑁×𝑀 , the kernel computes:

𝐶 = 𝐴 × 𝐵. Following linear algebra principles, as illustrated in

Figure 1, loop reordering over (𝑁,𝐾,𝑀) exposes different memory

access patterns and reuse behaviors depending on the sparsity

distribution and matrix dimensions.

For instance, as illustrated in Figure 1(a), Extensor [21] and

Sigma [47] adopt the inner-product dataflow to optimize SpMM

execution. Here, each output element 𝐶 [𝑛,𝑚] is computed by tak-

ing the dot product between the 𝑛-th row of the sparse matrix 𝐴

and the 𝑚-th column of the dense matrix 𝐵. This loop structure

promotes temporal reuse of the output row 𝐶 [𝑛, :], which remains

local during the inner loop iteration. However, neither the sparse

matrix 𝐴 nor the dense matrix 𝐵 benefits from effective reuse. The

nonzero pattern of each row in 𝐴 dictates which rows of 𝐵 must be

fetched. Specifically, computing𝐶 [𝑖, :] requires accessing 𝐵 [𝑘, :] for
every 𝑘 where 𝐴[𝑖, 𝑘] ≠ 0. This access is row-specific and irregular,

preventing the reuse of 𝐵 across iterations. As a result, 𝐵 is reloaded

for each row of 𝐴, leading to 𝑂 (𝑁 ) redundant reads.
On the other hand, outer-product [43, 69] is adopted to max-

imize the reuse of the input matrix 𝐵. As shown in Figure 1(b),

the 𝑘-th column of 𝐴 is broadcast across all rows of 𝐶 , and multi-

plied with the 𝑘-th row of 𝐵 to generate contributions to 𝐶 . This

traversal exploits the temporal reuse of 𝐵 [𝑘, :] across all output
rows. However, it incurs a high cost in output accumulation: partial

sums for 𝐶 [𝑛,𝑚] are generated out-of-order and must be buffered

or synchronized until all 𝑘 contributions are complete. This places

significant pressure on the on-chip memory to retain large portions

of 𝐶 throughout the computation.
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Figure 2: Data reuse of traditional SpMM accelerators.

Similarly, as shown in Figure 1(c), the row-based product (i.e.,

Gustavson) shares the inner-product’s goal of optimizing the reuse

of the output matrix 𝐶 , but mitigates some of the inefficiencies in

accessing 𝐵. This dataflow processes 𝐴 row by row: for each row

𝑛, it iterates over nonzeros 𝐴[𝑛, 𝑘], fetches the corresponding row

𝐵 [𝑘, :], scales it by 𝐴[𝑛, 𝑘], and accumulates the result into 𝐶 [𝑛, :].
While this improves access locality compared to inner-product,

the reuse of 𝐵 remains limited due to irregular sparsity, and the

accumulation into 𝐶 introduces synchronization overheads (e.g.,

multiple writes to the same row of 𝐶) when parallelized [25, 36].

2.2 Traditional Tiling Methods and Limitations
Tiling is a critical technique for organizing computation and mem-

ory access in SpMM to match the on-chip buffer capacity con-

straints. It partitions the sparse and dense matrices in the SpMM

kernel into manageable blocks to minimize redundant transfers and

enhance reuse. However, in SpMM, traditional tiling faces unique

challenges due to unstructured sparsity. Tiles with identical dimen-

sions can exhibit vastly different memory access patterns depending

on nonzero distribution, making workload scheduling and reuse dif-

ficult to model. The tiling strategy must therefore not only consider

matrix dimensions and buffer size, but also sparsity structure. That

is, the reuse potential lies in the relationships among nonzeros, not

merely where they are indexed. Traditional tiling methods ignore

this aspect, as they partition matrices into fixed rows and columns

based on consecutive index ranges.

Position-based tiling [21, 23, 29, 53] slices matrices into fixed

row or column blocks. While simple to implement, these tiles often

contain large regions of zeros, resulting in poor compute utilization

and wasted memory bandwidth when moved across the memory

hierarchy. Additionally, being agnostic to sparsity structure, tile

boundaries offer no guarantee about the locality or relevance of

nonzeros, leading to unpredictable and irregular accesses to dense

matrices 𝐵 and 𝐶 . Even worse, 𝐵 and 𝐶 must conform to the tile

dimensions of 𝐴, forcing entire rows or columns to be fetched

regardless of actual access pattern. This increases on-chip storage

demand and further complicates the exploitation of reuse in on-

chip buffers. Adaptive tiling methods [21, 23] attempt to balance

nonzeros across tiles but still operate on index-aligned regions,

resulting in irregular tile shapes, unpredictable reuse patterns, and

high control overhead. Consequently, large segments of 𝐵 and 𝐶

are fetched speculatively without guaranteed reuse.

On the other hand, loop reordering faces two key limitations in

determining temporal reuse. First, due to uneven nonzero distri-

butions and varying tile sizes, measuring optimal reuse is difficult.

Second, loop-based SpMM dataflows inherently favor either pull

or push, preventing simultaneous reuse of both input and output

matrices. To study the interaction between tiling and dataflow, we

characterized dense matrix reuse across four scientific domains
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Figure 3: Graph interpretation of SpMM dataflows.
with diverse sparsity and dimensions. We measure how often rows

of 𝐵 and 𝐶 are reused after being fetched on-chip (tile size 64 × 64),
spanning five state-of-the-art SpMM accelerators. As shown in Fig-

ure 2, the average reuse is 39.9%, with up to ≈ 92% of potential

reuse unexploited in some cases, underscoring the need for new

reuse-optimized execution strategies.

3 Graph Abstraction of SpMM kernels
Traditional matrix representations of SpMM impose a rigid struc-

ture on scheduling nonzero elements following row- or column-

wise coordinate traversal, where the sparsity patterns are over-

looked. Instead, we leverage a graph abstraction that preserves the

mathematical semantics of SpMM while exposing sparsity through

connectivity. As shown in Figure 3, we reinterpret the SpMM kernel

𝐶 = 𝐴 × 𝐵 as a directed graph 𝐺 = (𝑉 , 𝐸), where each nonzero

entry 𝐴[𝑛, 𝑘] ≠ 0 is an edge from source vertex 𝑘 to target vertex

𝑛. Here, the column dimension 𝐾 of 𝐴 defines the source vertices

and aligns with the row indices of 𝐵, while the row dimension

𝑁 of 𝐴 defines the target vertices and maps to the row indices of

𝐶 . The dense matrix 𝐵 ∈ R𝐾×𝑀 assigns 𝑀-dimensional feature

vectors to source vertices, and the output 𝐶 ∈ R𝑁×𝑀 aggregates

these features into target vertices via multiply-accumulate opera-

tions per edge. Pull-based dataflows [21, 46, 56] (inner-product and

row-wise) correspond to target nodes 𝑛 pulling features 𝐵 [𝑘, :] via
incoming edges. Push-based dataflows [14, 15, 46] (outer-product)

correspond to source nodes 𝑘 broadcasting 𝐵 [𝑘, :] along outgoing
edges to target nodes 𝑛.

However, source and target vertex counts determine dense ma-

trix storage requirements. When vertices span multiple partitions,

the corresponding dense matrix rows require multiple accesses. We

use two graph theory primitives for non-contiguous tiling: vertex
decomposition, which breaks high-degree vertices into lower-degree
ones (previewed in Figure 4(c)), and adaptive depth traversal (ADT),
which clusters highly connected vertices. The decomposed vertex

structure can reduce the 𝐾 and 𝑁 dimensions of the produced tiles

for dense matrices, whereas the adaptive depth traversal can cluster

nonzero elements within each row and column into a single tile,

improving the data reuse of each tile.

3.1 Non-contiguous Tiling
Matrix tiling partitions a large matrix to meet the limited storage

capacity. Current SpMM tiling techniques, such as nonzero based

scheduling and adaptive tiling [12, 23, 49], emphasize the quantity

of nonzero elements while neglecting their coordinate information.

This often incurs (1) increased on-chip storage demand for dense

and output matrices or (2) compromised data reuse due to the re-

dundant data fetches. For example, as shown in Figure 4(a) and (b),

if matrix 𝐴 employs either row or column-wise tiling, the row or

column dimensions of matrices 𝐵 and 𝐶 must be adjusted accord-

ingly to ensure dimension matching. This results in compromised
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data reuse and increased on-chip storage demands. To address this

issue, we propose non-contiguous tiling that does not adhere to

strict row or column index ordering as shown in Figure 4(c).

3.1.1 Vertex Decomposition. A key challenge in SpMM is that rows

or columns with many nonzero elements (i.e., high-degree vertices

in the graph abstraction) skew both compute and memory usage:

the same row from the dense matrix 𝐵 must be fetched repeatedly

to handle all associated nonzeros. To mitigate this, we first use

vertex decomposition to split any high-degree vertex 𝑣∗ with degree

deg(𝑣∗) > 𝑇 into multiple child vertices 𝑁 = ⌈deg(𝑣∗)/𝑇 ⌉, each
inheriting a fraction of 𝑣∗’s edges. Consequently, each child vertex

refers to the same row of B (via the parent’s coordinate) but can be

mapped to different tiles to avoid overwhelming a single tile.

The original vertex becomes a parent vertex, which later accu-

mulates outputs from its children. Figure 5(b) illustrates the result

of applying vertex decomposition to the input graph in Figure 5(a).

Vertices 𝐴,𝐶 , and 𝐸 are decomposed into child vertices (e.g., 𝐴 into

𝐴1 and 𝐴2), with each child assigned a subset of the original edges

according to the vertex loading order. For instance, edges from 𝐴

to 𝐸 and 𝐴 to 𝐹 are assigned to 𝐴1, while edges from 𝐴 to 𝐺 and

𝐴 to 𝐻 are assigned to 𝐴2. This transformation ensures that: (1)

all vertices have the degree at most 𝑇 , enforcing an upper bound

on the number of nonzeros per row or column and thus regulariz-

ing sparsity, and (2) dense operand accesses can now be localized

and reused across subgraphs, since child vertices (which duplicate

the parent’s dense row of matrix 𝐵) may be mapped to different

tiles. Specifically, rows or columns with a high number of nonzeros,

which would otherwise be reused across too many tiles, are now

broken into predictable blocks that improve data locality.

Algorithm 1 illustrates the process of offloading edges from 𝑣∗

to its children. To set 𝑇 , we perform Deterministic Skip Sampling

(DSS) [54] with𝑚 = 1000 to estimate degree distributions within 3%

Algorithm 1 Graph Vertex Decomposition

Input: Graph𝐺 (𝑉 , 𝐸 ) , Threshold𝑇
Output: Decomposed Graph𝐺 ′ (𝑉 ′, 𝐸′ ) , list 𝑐ℎ𝑖𝑙𝑑-𝑝𝑎𝑟𝑒𝑛𝑡
1: function Decompose(𝐺,𝑇 )

2: Initialize children, keep, split, child_info

3: for 𝑣 ∈ 𝑉 do
4: if Degrees(𝑣) > 𝑇 then
5: neighbors← GetNeighbors(𝐺, 𝑣)
6: keep, split← SplitNeighbors(neighbors,𝑇 )
7: EdgeOffload(G, v, keep)

8: children← ChildDescend(𝑣, split,𝑇 )
9: EdgeLoad(child_info, children)

10: 𝑐ℎ𝑖𝑙𝑑-𝑝𝑎𝑟𝑒𝑛𝑡 ← ChildDescend(𝑣, children)
11: end if
12: end for
13: 𝐺 ′ ← GraphReconstruct(𝐺 (𝑉 , 𝐸 ), children)
14: return𝐺 ′ , 𝑐ℎ𝑖𝑙𝑑-𝑝𝑎𝑟𝑒𝑛𝑡
15: end function

error. We choose 𝑇 so that the expected set of decomposed vertices

(and their partial results) meets the on-chip buffer capacity (which

will be discussed in the following section).

3.1.2 Quantifiable Data Reuse in Graph Abstraction: After decom-

position, we form non-contiguous tiles by grouping vertices that

maximize data reuse, independent of their original coordinate order.

In particular, we co-locate vertices that share common neighbors,

capturing reuse via two-hop pathways. When two vertices share

neighbor 𝑣 , they both require access to row 𝐵 [𝑣, :] and contribute

to overlapping rows in𝐶 . Grouping such vertices into the same tile

allows reuse of both dense input and partial output data. We define

a reuse-maximization objective across all partitions 𝑝 as:

max

|𝑝 |∑︁
𝑖=0

∑︁
𝑣∈𝑉𝑝

(
deg(𝑣)

2

)
(1)

Each term

(
deg(𝑣)

2

)
quantifies reuse opportunities centered at

vertex 𝑣 : unique vertex pairs in partition 𝑝 that share 𝑣 as a neighbor.

Placing such triplets, 𝑣 and its neighbors into the same tile enables

both operands (i.e., matrix 𝐵 rows) and outputs (i.e., rows of matrix

𝐶) to be reused locally. For example, in Figure 5(b), vertices 𝐸 and

𝐹 share neighbor 𝐴1, forming a two-hop pathway suggesting these

vertices should be grouped to maximize data locality.

3.1.3 Adaptive Depth Traversal for Non-contiguous Tiling: To solve

this optimization problem while maintaining balanced partitions,

we introduce Adaptive Depth Traversal (ADT), a modified depth-

first search (DFS) traversal. ADT initiates multiple parallel traver-

sals from different starting points in the decomposed graph 𝐺 ′,
exploring each with limited depth 𝐷 . This captures the benefits
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Figure 6: Directed graph of asymmetric sparse matrix.
of DFS by including two-hop pathways while staying within local

neighborhoods like BFS. Unlike traditional DFS, ADT does not ex-

plore branches to their maximum depth but instead balances depth

exploration with breadth coverage. This strategy increases the like-

lihood of capturing connected communities within each subgraph,

where multiple vertices can share access to common neighbors,

translating to improved data locality in SpMM, where different

nonzeros access the same row of 𝐵. By limiting exploration depth

to parameter 𝐷 (set similarly to threshold 𝑇 from vertex decompo-

sition), we balance vertex and edge distribution across partitions.

3.1.4 Conflict Management. Implementing ADT requires adher-

ence to specific traversal rules to maximize reuse opportunities.

Beyond standard DFS backtracking, additional backtracking in-

stances, termed conflicts, may arise. Figure 5(c) illustrates how ADT

navigates a graph to achieve partitioning in the presence of these

conflicts. These conflicts include:

Exclusivity Conflict: The search hits a vertex already claimed

by another partition (backtrack case 1○ in Figure 5(c)), triggering a

backtrack to explore different branches. Sibling Conflict: A newly

visited child vertex such as 𝐴2 conflicts with its sibling (e.g., 𝐴1)

already in the same partition (backtrack case 2○). Since the sibling

already ensures the required row/column reuse, the traversal back-

tracks to another branch. Parent-Child Conflict: A parent vertex

𝐶 lands in the same partition as its child 𝐶1 (backtrack case 3○).

To improve the vertex diversity and balance workload, either the

parent or child vertex is thus reassigned to a different partition.

3.1.5 Impact of Column Tiling on Off-chip Memory Access. In prac-

tice, the column dimension (𝑀) of dense matrices 𝐵 and 𝐶 may

exceed on-chip buffer capacity, necessitating column-wise tiling.

Smaller𝑀𝑡 values enable more vertices (rows from sparse matrix

𝐴) to fit within on-chip buffers, enhancing vertex connectivity ex-

ploitation through ADT. However, this increases the number of

passes through sparse matrix 𝐴, as each pass processes only a frac-

tion of the output columns. Conversely, larger𝑀𝑡 values reduce the

required passes through𝐴 but limit the number of vertices that can

be processed concurrently, constraining ADT’s ability to capture

graph connectivity patterns. To quantify this relationship, we ana-

lyze the buffer capacity constraint that determines the maximum

number of vertices |𝑉 ′𝑝 | that can reside on-chip within partition 𝑝:

|𝑉
′
𝑝 | ·𝑀𝑡 · 2 · 4 + (2 · |𝐸

𝑝

𝐼
| + |𝐸𝑝

𝑋
|) · 𝑠 ≤ 𝐵𝑐𝑎𝑝 (2)

where factor 2 represents both dense input and output matrices

(𝐵 and 𝐶), 4 bytes represents the size of each 32-bit floating-point

element, 𝑠 is the size in bytes for each nonzero element in the

sparse matrix, and 𝐵𝑐𝑎𝑝 is the on-chip buffer capacity. 𝐸
𝑝

𝐼
represents

internal edges (both endpoints in partition 𝑝), and 𝐸
𝑝

𝑋
represents

cut edges (one endpoint in partition 𝑝).

After vertex decomposition, each vertex’s degree is bounded by

threshold𝑇 , and we let𝑉 ′ and 𝐸 denote the vertex and edge sets of

the transformed graph. The average degree is 𝜇′ = |𝐸 |
|𝑉 ′ | . Assuming

|𝑉𝑝 | vertices per partition and 𝑝 total partitions, we estimate:

𝐸
𝑝

𝐼
≈ |𝑉

′
𝑝 | · 𝜇′ ·

1

|𝑝 | , 𝐸
𝑝

𝑋
≈ |𝑉

′
𝑝 | · 𝜇′ ·

|𝑝 | − 1
|𝑝 | (3)

The factor
1

|𝑝 | represents the probability that both endpoints of

an edge fall within the same partition, while
|𝑝 |−1
|𝑝 | indicates the

probability of an edge crossing partition boundaries as |𝑝 | increases.
Substituting these estimations into Equation 2 and solving for𝑀𝑡 :

𝑀𝑡 =

𝐵𝑐𝑎𝑝 − |𝑉𝑚𝑎𝑥
′

𝑝 | · 𝜇′ ·
(
1 + 1

|𝑝 |

)
· 𝑠

|𝑉𝑚𝑎𝑥 ′𝑝 | · 8
(4)

This equation reveals the inverse relationship between column

tile size𝑀𝑡 and vertex capacity |𝑉𝑚𝑎𝑥 ′𝑝 |. To evaluate ADT’s effec-

tiveness in minimizing cross-partition edges, we define an edge

locality factor 𝜆, which represents the fraction of edges that cross

partition boundaries. Lower 𝜆 values indicate better locality capture

by ADT, resulting in fewer redundant memory accesses. The total

data volume accessed from DRAM per SpMM operation can then

be expressed as:

𝐷𝑡𝑜𝑡𝑎𝑙 = 8 · |𝑉 ′ | ·𝑀 + 𝑀

𝑀𝑡
· |𝐸 | · 𝑠 · 2 · 𝜆 (5)

where the first term represents accesses to dense matrices 𝐵

and 𝐶 , and the second term represents accesses to sparse matrix 𝐴,

adjusted by the ADT effectiveness factor. The 𝜆 term reflects that

as external edged decrease, fewer redundant accesses are needed

across tiles.

3.1.6 Non-contiguous Tiling for Asymmetric Sparse Matrix. We use

an example to demonstrate the applicability of non-contiguous

tiling to the asymmetric sparse matrix as shown in Figure 6, where

vertex 4 connects to vertices 0 and 2. Vertex 4 pushes its feature

vector 𝐵 [4, :] to both targets, which in turn pull and accumulate

these into 𝐶 [0, :] and 𝐶 [2, :], respectively. Asymmetric sparse ma-

trices can be formulated as directed graphs in our abstraction, with

𝐾 source and 𝑁 target vertices could result in rectangular matri-

ces (𝑁 ≠ 𝐾). Applying vertex decomposition and ADT can still

partition the rectangular matrices into different tiles.

4 Pull-after-Push Dataflow
The next challenge is to design a dataflow that supports such sparse

tiles and reframes the push–pull dichotomy to fully exploit the

reuse exposed by ADT. Conventional SpMM dataflows follow ei-

ther a Push (outer-product) or Pull (inner- and row-wise) execu-

tion model. Push emphasizes reuse of dense input matrix rows via

column-wise broadcasting but incurs scattered and uncoordinated

writes to the output. Pull improves locality for output writes but

suffers from poor reuse of dense inputs due to irregular sparsity.

To overcome these limitations, we propose a novel hybrid dataflow

named Pull-after-Push (PaP), integrating the complementary advan-

tages of PUSH and PULL paradigms. At its core, PaP exploits the

structural information exposed by our graph abstraction of a sparse

tile. PaP operates through a coordinated two-phase traversal.
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Push Phase (column-wise): Upon encountering a nonzero

element 𝐴[𝑖, 𝑗], the dataflow retrieves the corresponding row 𝐵 [ 𝑗, :
] from the dense matrix and multiplies it with all nonzeros in

column 𝑗 of the sparse matrix. This operation efficiently exploits

the temporal reuse of 𝐵 [ 𝑗, :] across multiple multiplications and

distributes partial products to distinct output buffers, eliminating

write conflicts. This is shown in Figure 7.

Pull Phase (row-wise): After completing the column traversal,

PaP immediately transitions into the PULL phase, revisiting the first

nonzeros found on 𝐴’s 𝑗 column, and horizontally processing the

remaining nonzeros along row 𝑖 in 𝐴 to finalize the accumulation

into output row 𝐶 [𝑖, :]. Such interleaved switching naturally cap-

tures both dense input and output reuse opportunities, efficiently

utilizing on-chip buffering for partial sums.

Unlike static, loop-oriented dataflows like inner-product, outer-

product, or row-wise schemes that commit to fixed traversal pat-

terns, PaP adapts dynamically to the unstructured state of sparsity.

The hybrid traversal allows each PE to exploit both dense matrix

row reuse (Push phase) and output row reuse (Pull phase) without

sacrificing either benefit, substantially reducing off-chip memory

access compared to pure Pull or Push implementations. For exam-

ple, figure 7 illustrates the PaP dataflow from a graph abstraction

perspective. Given nonzero entries {(0, 1), (0, 2), (1, 0), (2, 1)}, PaP
initiates with column 1 (PUSH), computing partial sums for rows

0 and 2. It then switches to row 0 (PULL), accumulates remaining

values, and proceeds dynamically, guided by graph connectivity.

This dynamic, graph-guided traversal ensures predictable reuse,

conflict-free execution, and efficient local buffer utilization, char-

acteristics unattainable with traditional matrix-centric dataflows.

This behavior holds within each tile, as decomposition and ADT

regularize the sparsity pattern.

Benefits: PaP’s adaptive traversal directly leverages graph struc-

ture to achieve (1) maximal reuse for dense rows of 𝐵 (during the

Push phase), (2) reuse of output buffers (localized row-wise aggre-

gation during Pull phase), and (3) conflict-free writes to different

rows of 𝐶 concurrently.

4.1 Bidirectional Fiber Tree (BFT) Format
Efficiently implementing PaP requires a sparse storage format capa-

ble of adaptive, bidirectional traversal along both rows and columns

simultaneously. Conventional formats, including CSR, CSC, and

traditional fiber trees, optimize data accesses strictly along a single

dimension—either rows or columns [51]. Such rigidity fundamen-

tally restricts the efficiency of PaP’s traversal. To overcome this
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limitation, we introduce the Bidirectional Fiber Tree (BFT), a special-
ized compressed format explicitly designed for PaP’s simultaneous

multi-dimensional traversal.

As shown in Figure 8, the BFT format extends the fiber tree con-

cept by explicitly interleaving row and column indices, matching

PaP’s traversal semantics. Specifically, BFT begins traversal from

the first encountered nonzero (𝑖, 𝑗) at rank-1 (column), branching

to rank-2 fibers (rows sharing the column index 𝑗 ) and subsequently

connecting to rank-3 fibers (columns sharing each row index 𝑖). This

hierarchical structure explicitly encodes both reuse opportunities

for dense input (column-centric) and output accumulation (row-

centric). In traditional fiber trees, rigidly traversing all nonzero

elements in an entire row or column could potentially affect the

spatial data locality. The proposed BFT format explicitly enables

bidirectional (row-to-column and column-to-row) and partial tra-

versal. In particular, fibers at rank 2 concentrate reuse opportunities

for matrix 𝐵 (identical col_index), while fibers at rank 3 concen-

trate reuse opportunities for matrix 𝐶 (identical row_index). As

illustrated in Figure 8(c), traditional fiber trees scatter these reuse

opportunities across separate fibers, whereas Figure 8(d) shows that

the BFT structure organizes reuse opportunities into single fibers

in a concentrated manner, significantly enhancing data locality and

reducing redundant memory accesses.

Overhead Analysis. The storage overhead and efficiency of the

compression format depend on the sparsity ratio and distribution.

BFT, similar to COO, records the full set of coordinate information

of each nonzero element. However, BFT further reduces the storage

overheads of COO by encoding row and column indexes similar to

CSR and CSC. In the worst case scenario, when no nonzero elements

share the same column or column index, BFT incurs approximately

33% of storage overheads relative to CSR or CSC.

5 Aquila Accelerator
This section presents the accelerator design that enables our pro-

posed graph-based tiling and dataflow.We introduce aNon-Contiguous
Tiling (NCT) Engine that dynamically performs vertex decomposi-

tion followed by adaptive depth traversal (ADT) to generate non-

contiguous tiles at runtime. To support inter-tile accumulation

driven by dependencies in high-degree sparse rows, we design a

dedicated Child-Parent Aggregator unit. Finally, we introduce a

custom Processing Element (PE) microarchitecture that executes

the pull-after-push (PaP) dataflow directly over the BFT format,

enabling fine-grained reuse and conflict-free parallel execution.

Figure 9 presents the high-level architecture of Aquila, compris-

ing a Non-Contiguous Tiling (NCT) Engine, a Processing Element
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Figure 9: Overview of Aquila accelerator architecture.

(PE) Array, a Child-Parent Aggregator (CPA), and a unified Control

and Instruction Dispatch subsystem. The Global Buffer (GLB)
acts as an intermediary between off-chip DRAM and the on-chip

compute fabric, provisioning operands for both the sparse matrix

𝐴 and dense matrices 𝐵 and 𝐶 in the SpMM kernel. A crossbar in-

terconnect connects GLB to the PE array, enabling parallel operand

distribution. The Control Unit interfaces with the host through a

request dispatcher, which compiles high-level kernel invocations

into a sequence of micro-operations issued to the Instruction
Buffers. An Instruction Dispatcher coordinates the issue and
retirement of instructions across the NCT Engine and PE Array,

maintaining execution coherence.

At runtime, the NCT Engine streams subgraphs from the in-

put adjacency matrix into on-chip memory that fits within GLB

capacity. Each subgraph is transformed to mitigate irregularity

through vertex decomposition and partitioned via ADT, forming 𝑝

non-contiguous tiles matched to the number of available PEs. Once

the tiles are generated, they are dispatched to the PE array, where

each PE is assigned one tile for processing. While the PEs execute

the SpMM kernel over the current tile set using the PaP dataflow,

the NCT Engine concurrently begins processing the next subgraph

in a pipelined manner, ensuring sustained throughput. Operand

tiles are streamed from the GLB via a crossbar fabric, and partial

sums are locally accumulated in PE-side buffers. However, if a row

of the output matrix corresponds to a parent vertex that receives

partial contributions from multiple child vertices across different

tiles, final aggregation cannot occur within a single PE. In this case,

the PE forwards its partial result to the Child-Parent Aggregator

(CPA), which queues and accumulates these contributions using a

lightweight parent-child tracking table. Once all child contributions

have been received, the CPA finalizes the reduction and flushes the

result to DRAM.

This architecture enables decoupled execution of decomposi-

tion, computation, and aggregation. By pipelining tile generation

and SpMM execution, and offloading inter-tile reduction to the

CPA, Aquila eliminates global synchronization barriers, improves

PE utilization, and maximizes locality for both data and compute

across the irregular sparse computation. The Aquila accelerator
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Figure 10: Non-contiguous tiling (NCT) engine architecture.

utilizes a three-stage pipeline to maximize throughput. First, the

Non-Contiguous Tiling (NCT) Engine dynamically generates opti-

mized tiles at runtime using vertex decomposition and ADT. Next,

a parallel PE array processes these tiles, with each PE executing

the SpMM kernel using the efficient Pull-after-Push (PaP) dataflow.

A decoupled CPA then asynchronously finalizes results for decom-

posed vertices, avoiding synchronization stalls.

5.1 Non-contiguous Tiling (NCT) Engine
Facilitating the real-time execution of Vertex Decomposition fol-

lowed by ADT is essential to generate non-contiguous tiles in a

streaming manner. The engine is architected around four tightly

coupled units: (1) a Vertex Decomposition Unit that identifies and

splits high-degree vertices, (2) a Traversal Unit that performs bounded-

depth exploration to maximize local reuse, (3) a Conflict Man-

agement Unit that enforces partition correctness via fast exclu-

sion checks, and (4) a Vertex Assignment Unit that finalizes load-

balanced tile generation. All units operate in parallel over a streamed

graph representation of the sparse workload, ensuring minimal

stalls and consistent throughput, which is shown in Figure 10.

5.1.1 Vertex decomposition Unit: This unit traverses the SpMM

graph as described in Algorithm 1. The Graph Metadata, stored in

CSR format, is first streamed into multiple Input FIFOs. Vertices are
forwarded to the Degree Calculator module, which identifies parent

vertices whose degrees exceed threshold 𝑇 . A multi-bank buffer

records their IDs, and the corresponding rows of matrix 𝐵—i.e., the

features of parent vertices—are placed in the Parent Vertex Buffer
in global memory. Since parent vertices are frequently accessed

across tiles, caching their features reduces off-chip memory traffic

during execution.
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Figure 11: Walkthrough example of the PaP dataflow and matrix traversal according to the BFT format.
As shown in Figure 10 ( 1○), decomposed vertices are passed

to the Child Vertex Allocation module, which computes the num-

ber of child vertices required per parent based on edge count. The

Edge Index Calculator then redistributes excess edges from each

parent to its assigned children, as shown in 2○. To manage depen-

dencies between child and parent vertices efficiently, we utilize a

lightweight Parent-Child Table. This table records each Vertex_ID
alongside its corresponding Parent_ID. This organized structure

ensures the accurate and efficient accumulation of partial results

for parent vertices whose accumulation workload is distributed

across child vertices.

5.1.2 Traversal Unit. The Traversal Unit implements the ADT algo-

rithm to construct reuse-aware partitions via bounded-depth explo-

ration. This unit dequeues vertices from Traversal LIFOs, populated
by the Graph Metadata Buffer. Each LIFO maintains depth via a

stack-like structure, with entries consisting of Vertex_ID, Parent_ID,
and current_H. The first two fields are 14 bits, supporting subgraphs
with up to 16,384 vertices; current_H is 4 bits, allowing traversal

depths up to 16. Empirically, SpMM-abstracted graphs in many

domains exhibit subgraph diameters rarely exceeding 5 [39, 52],

keeping traversal within this bound.

Each LIFO is assigned to a distinct graph partition. To initiate

traversal, it dispatches the top vertex to the Row_Ptr Fetcher, which
retrieves the start and end offsets for its adjacency list. The Neigh-
bor Loader then streams the neighbors and checks whether their

current_H exceeds the limit stored in the Hop Distance Register 3○.

Vertices exceeding the limit are dropped. At 4○, valid neighbors

increment their current_H, are pushed back into the LIFO for con-

tinued traversal, and forwarded to the Exclusive Check FIFOs for
conflict handling before final partition assignment.

5.1.3 Conflict Management Unit: This unit enforces the conflict
rules described in Section 3.1.4. At 5○, each vertex ID is checked

against the Visited Vertex Buffer to ensure exclusivity within parti-

tions; duplicates are discarded, while valid entries proceed to the

Parent-Child Check FIFOs. At 6○, the unit checks for sibling and

parent-child conflicts by comparing a child’s Parent_ID with the

parent IDs in its partition’s Partition Buffer. Child vertices that share
a parent or sibling within the same partition are dropped.

5.1.4 Vertex Assignment Unit: At 7○, a capacity check verifies

whether the partition can accommodate the incoming vertex, using

limits defined in the Partition Capacity Register. Vertices that exceed
capacity are discarded; otherwise, they are added to the Partition

Buffer and logged in the Visited Vertex Buffer, where each entry uses

14 bits for the Vertex_ID. Once partitioning completes, all vertices

within a partition are mapped to a dedicated processing element.

Additionally, the NCT Engine Controller handles metadata requests

from the host and issues instructions from the Instruction Buffer,
configuring traversal parameters such as Hop Distance, Partition
Capacity, and transition logic. It also coordinates control signals

for multiplexers and manages FIFO load/store operations.

5.2 PE Microarchitecture for PaP Dataflow
Each Processing Element (PE) in Aquila is designed to natively

support the proposed Pull-after-Push (PaP) dataflow through a

hardware-software co-optimized microarchitecture. At the core of

this design is a dual-buffer interface, consisting of a Sparse Buffer
and a Dense Buffer, that respectively ingest the compressed sparse

tile (encoded in BFT format) and the corresponding dense matrix

rows. During the Push phase, the PE exploits reuse by multicasting

the nonzeros located in the same column of the sparse matrix to

a MAC array cascade, while spatially pinning the corresponding

dense row of matrix 𝐵 across the MAC lanes. This spatial pinning

ensures that the dense row 𝐵 [ 𝑗, :] is reused across multiple MAC

operations without reloading it from the buffer, as all nonzeros

𝐴[𝑖, 𝑗] sharing the same 𝑗 index are consumed in a single phase.

This mode is highly effective at amortizing the cost of accessing 𝐵.

Upon completion of the column traversal, the PE transitions to

the Pull phase. Here, the PE reorients to a row-wise aggregation

model where it processes the partial sums corresponding to 𝐶 [𝑖, :].
These partial results, previously generated during the Push phase

and stored in the Partial Row (PR) buffer, are incrementally updated

as the PE traverses additional nonzero elements in the same row

of 𝐴 (i.e., 𝐴[𝑖, :]). This enables localized accumulation of output

values without global synchronization or redundant memory move-

ment. The bidirectional traversal logic in the PE is driven entirely

by the BFT-encoded coordinates, which expose both the vertical

and horizontal fiber views within a tile. Once a row’s aggregation

is finalized—either within the PE or across PEs via child-parent

reduction—the result is flushed to the output buffer or forwarded to

the CPA for final accumulation. Overall, the PE architecture allows

seamless integration of graph-abstracted reuse into dense compu-

tation pipelines, achieving high MAC utilization and minimizing

buffer pressure across a range of sparsity regimes.

Walkthrough Example: Figure 11 shows an 8-step execution

of the proposed PaP dataflow on a 1D MAC array of size 3. Step
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1 begins at coordinate (0, 0) in the 𝐴 tile. The nonzero at 𝐴[1, 0]
triggers a push-style execution: the value is broadcast across the

MAC array, and 𝐵 [1, :] elements are unicasted to compute 𝐶 [1, :].
Steps 2 and 3 switch to pull-style. PaP searches for nonzeros in 𝐴

whose row indices match that of𝐴[1, 0], enabling reuse of the active
output row 𝐶 [1, :] to accumulate remaining partial sums. Step 4

returns to push-style to process 𝐴[0, 1], initiating computation of

𝐶 [0, :] with 𝐵 [1, :]. Steps 5 and 6 process 𝐴[2, 1] and 𝐴[3, 1], which
share the same column index as 𝐴[0, 1]. The dataflow reuses the

already loaded 𝐵 [1, :] without re-fetch. Step 7 switches back to

pull-style. Starting from the last element in 𝐴[:, 1], it enables the
reuse of row 𝐶 [3 :]. Step 8 concludes the pull phase by consuming

remaining nonzeros in rows corresponding to previously active

column indices, finalizing the computation of partial sums in 𝐶 .

The dataflow dynamically alternates between push and pull styles

to maximize reuse of both 𝐵 and 𝐶 operands.

5.3 Child-Parent Aggregator Unit
The Child-Parent Aggregator (CPA) is a specialized unit responsible

for accumulating partial sums from decomposed child vertices to

their corresponding parent vertices. As shown in Figure 9, this

decouples irregular inter-tile reductions from the PE datapath and

avoids cross-PE synchronization. During SpMM execution, each PE

processes a non-contiguous tile (subgraph). If a vertex is identified

as child within the PE logic, the partial output vector 𝐶𝑖,: is redi-

rected to the CPA unit rather than being finalized. The CPA receives

partial sums tagged with both the child and parent vertex IDs. It

uses the Parent-Child Table to aggregate all partial results corre-

sponding to a given parent vertex. These partial sums are buffered

in the Parent Buffer, which holds in-flight reductions. To track com-

pletion, each parent vertex is associated with a counter that reflects

the expected number of child contributions—determined statically

from the decomposition process. Upon receipt of each partial sum,

the CPA updates the accumulator entry and decrements the counter.

Once all children have reported their results, the final accumulated

output is flushed to the output buffer and written back to DRAM.

By offloading parent-child reductions to the CPA, Aquila allows

each PE to process tiles independently, alleviating the inter-PE

synchronization requirements. This avoids introducing irregular

accumulation logic within the PE datapath. Moreover, this design

ensures correctness in the presence of decomposed vertices, while

preserving scalability by bounding buffer requirements and track-

ing logic to only the subset of high-degree vertices identified during

tiling. However, the mixed row- and column-wise access patterns

of the PaP dataflow might lead to bank conflicts within the GLB. A

high-degree vertex needed by multiple PEs simultaneously could

cause bank conflicts, as concurrent requests to the same bank force

serialization, stalling PEs and reducing memory-level parallelism.

Aquila mitigates this through Vertex Decomposition, which splits

the workload of high-degree vertices into logical child vertices.

The ADT algorithm then assigns these children to non-contiguous

tiles mapped to different PEs, naturally spreading memory requests

across GLB banks and avoiding contention. During accumulation,

instead of multiple PEs issuing conflicting write operations to the

same bank in the GLB, each PE forwards its partial result to a dedi-

cated CPA unit. This shifts the many-to-one write-back bottleneck

into independent transfers handled asynchronously by the CPA.

Table 1: Evaluated dataset properties

Dataset Dim. Application Symm. NNZ E2V

Delaunay n24 (DELL) 16.78M Numerical Simulations Yes 100.66M 6.0

wiki-topcats (WIKI) 1.79M Wikipedia Hyperlinks No 28.51M 15.9

mycielskian17 (MYC) 0.10M Graph Coloring Yes 100.25M 1023.0

Serena (SER) 1.39M Geomechanical Modeling Yes 64.13M 46.1

coPapersCiteseer (PAP) 0.43M Citation Co-authorship Yes 32.07M 73.9

GAP-road (GAP) 23.95M Road Network Yes 57.71M 2.4

Reddit (RED) 0.23M Social Media Yes 114.62M 492.8

PubMed (PMED) 0.02M Citation Network Yes 0.09M 4.5

MInference 1.0 (MIN) 0.12M Machine Learning No 1,638.4M 12,800

SeerAttention (SEE) 0.03M Machine Learning No 122.88M 3,840

Offloading irregular accumulation preserves GLB bandwidth for

predictable operand fetches and maintains high throughput across

the PE array. Once all child contributions for a parent vertex are

received, the CPA performs a single final write to the output buffer,

minimizing GLB write traffic.

6 Evaluation
6.1 Simulation Setup
Configurations: Simulation Setup. We built a cycle-accurate

simulator for Aquila, following methodologies from prior work [34,

55, 59]. The simulator integrates with Ramulator [30] tomodel HBM

with 256 GB/s bandwidth and captures the cycle-level behavior of

all compute and memory components. Aquila comprises 32 PEs,

each with a 4×8 FP32 MAC array (1K MACs total), operating at

1 GHz. The 1.25 MB global buffer includes 512 KB sparse, 512 KB

dense, and 256 KB auxiliary storage. Local PE buffers sum to 35 KB.

For ASIC evaluation, we synthesize in Verilog using TSMC 32nm

with Synopsys Design Compiler. Switching activity is captured via

waveform traces and analyzed using PrimeTime PX. On-chip buffer

energy and area are modeled with CACTI 7.0 [4].

Datasets. We evaluate Aquila using eight datasets spanning

numerical simulation (DEL, SER), network analysis (WIKI, PAP),

graph algorithms (GAP, MYC [10]), and GNN workloads (RED [19],

PMED [48]). These datasets vary in sparsity ratio (7.14 × 10−6 to
2.11× 10−3) and structure (i.e., symmetric and asymmetric), provid-

ing a broad benchmark suite. Further, to assess Aquila at moderate

sparsity (10%), we include two sparse matrices from intermediate

attention maps of SeerAttention [13] and MInference [27] LLMs.

Dataset properties are summarized in Table 1.

Baseline Platforms: We evaluate Aquila against three state-

of-the-art SpMM accelerators—Sextans [49], SPADE [17], and HoT-

tiles [16], and two GNN accelerators, I-GCN [15] and ReGNN [7],

whose aggregation phases performs SpMM. To ensure fairness, we

isolate and simulate only the aggregation kernel for both GNN accel-

erators and match their architectural parameters with Aquila. For

I-GCN [15], we replicate the islandization mechanism for stream-

ing dense tiles and also replicate its redundancy elimination mech-

anism. For ReGNN, we implement the redundancy elimination

methodology [26]. For SpMM accelerators, Sextans utilizes out-of-

order scheduling within rows to balance workload, mitigate RAW

dependencies, and optimize pipeline utilization. SPADE implements

tile-based scheduling with barrier synchronization, and we repli-

cated its bypass buffers, which avoid cache interactions. HoTtiles ap-

plies an analytical model exploiting intra-matrix heterogeneity [16],

partitioning matrices into dense regions processed by compute-

intensive "Hot Workers" (analogous to Sextans’ PEs) and sparse
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Figure 12: Normalized speedup over Sextans with varying dense input matrix dimension (k) across datasets.
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Figure 13: Off-chip memory access normalized to Sextans.
regions handled by latency-tolerant "Cold Workers" (similar to

SPADE’s PEs). For a comprehensive comparison, Aquila’s evalua-

tion incorporates kernel execution along with host-to-device and

device-to-host memory transfer times. For a fair comparison, all

designs are scaled to a 1K-MAC array organized into 32 PEs, run-

ning at a projected 1 GHz. The GLB size is uniformly set to 1.25 MB.

We also replicate the architecture and dataflow of the baselines as

described in their work.

6.2 Performance Analysis
Figure 12 presents the normalized speedup of Aquila and the base-

lines relative to Sextans across four feature dimensions: 𝐾 ∈ {32,
64, 128, 256}. The results demonstrate Aquila’s consistent perfor-

mance advantages across diverse sparsity patterns. Averaged across

all datasets and dimensions, Aquila achieves 4.88× speedup. Aquila

exhibits improving relative performance as 𝐾 increases. This trend

stems from Aquila’s core design principles: vertex decomposition

regularizes high-degree vertices that would otherwise create bottle-

necks at larger𝐾 , while ADT-generated non-contiguous tiles expose

reuse patterns that become more valuable as arithmetic intensity

rises. The PaP dataflow amplifies both 𝐵-row and 𝐶-row locality

simultaneously, allowing these reuse opportunities to effectively

amortize growing DRAM traffic. In contrast, coordinate-aligned

tiling schemes and rigid dataflows in prior work fail to capture such

reuse potential as 𝐾 grows.

OnGAP, Aquila demonstrates exceptional dominancewith speedups

growing from 18.3× at 𝐾 = 32 to 33.5× at 𝐾 = 256 over Sex-

tans. This low-density dataset challenges traditional approaches:

ReGNN’s redundancy elimination provides limited benefit when

edge density is insufficient for vertex clustering, while HotTiles’

heterogeneity-aware partitioning finds few dense regions to exploit.

Aquila’s vertex decomposition and ADT, however, discover and

co-locate reuse opportunities within sparse neighborhoods, main-

taining high utilization even in low-density regimes. Conversely,

on MYC, where higher connectivity enables more effective tradi-

tional optimizations, Aquila’s advantages are consistent: 3.2× to

5.4× across 𝐾 values. Here, I-GCN’s islandization and ReGNN’s
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Figure 14: Data Reuse Comparison of Aquila vs. prior works.
redundancy reduction gain traction due to abundant vertex connec-

tivity, yet Aquila’s unified approach to both input and output reuse

through PaP maintains superior performance. As 𝐾 increases, the

reuse quantification in Equation 1 becomes more impactful, since

two-hop pathways expose greater data sharing opportunities. This

theoretical prediction aligns with the empirical observation that

Aquila’s relative advantage strengthens with feature dimension

growth, while matrix-centric approaches plateau or degrade.

6.3 Off-Chip Memory Access
Figure 13 shows normalized off-chip memory accesses across accel-

erators (normalized to Sextans). On average, among SpMM accel-

erators, Aquila reduces off-chip memory accesses by 3.23×, 2.85×,
and 2.81× over Sextans, SPADE, and HotTiles, respectively. It also

outperforms ReGNN and I-GCN with 2.67× and 2.38× reductions.

In RED and PMED, Sextans, SPADE, and HotTiles incur higher

off-chip memory accesses, as techniques like NNZ scheduling, tile-

based strategies, and hot/cold region separation are less effective

on power-law sparse matrices like RED and PMED. ReGNN reduces

memory traffic by caching frequently shared vertex sets, common

in such graphs. I-GCN improves locality by colocating high-degree

vertices with its neighbors, mitigating irregular accesses. However,

GNN accelerators face limitations: in PAP and MYC, their off-chip

accesses exceed those of SpMM accelerators on average due to un-

predictable sparsity and corresponding access patterns. Although

prior work employs sophisticated tiling and scheduling, these tech-

niques react inconsistently to sparsity variations, yielding unstable

memory behavior. Aquila overcomes this by using a parent buffer

to cache high-degree vertices on-chip, consistently reducing off-

chip accesses—especially for vertices spanning multiple tiles, thus

improving memory efficiency across diverse datasets.

In addition, we tile the Cora graph [60] into 64 × 64 tiles. Fig-
ure 15(b) shows the share of ineffectual (all-zero) tiles after ver-

tex decomposition and ADT. Only 17 of ∼ 3K vertices exceed the

degree threshold, so duplication overhead is <0.005%. ADT parti-

tions vertices by connectivity rather than coordinate order, forming

reuse-rich effectual tiles while isolating sparse, ineffectual ones for



Rethinking Tiling and Dataflow for SpMM Acceleration: A Graph Transformation Framework MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

(a) Original matrix (b) After decomp. & ADT

0

0.5k

0.1k

1.5k

2k

2.5k

3k

0 0.5k 0.1k 1.5k 2k 2.5k 3k 0 0.5k 0.1k 1.5k 2k 2.5k 3k

In
e
ff

e
c
tu

a
l 
ti
le

s
E

ff
e

c
tu

a
l 
ti
le

s

Empty 64×64 Tiles: 4.2% Empty 64×64 Tiles: 55.4%

(c) Ineffectual tile percentage

Figure 15: vertex decomposition and ADT performance.

500

1K

1K

2K

D
eg

. p
er

 p
ar

ti
ti

on

RED

200

400

600

PMED

200

300

400

500

GAP

20K

40K

60K

80K

100K
MYC

Sextans I-GCN Aquila

Figure 16: Average and range of the workload (sum of degree)
across partitions (PEs).
elimination. As a result, ≈ 55% of tiles are ineffectual, far above

the 4.2% under conventional tiling [16, 17, 49] (Figure 15(a)). Fig-

ure 15(c) confirms the advantage across tile sizes, noting that larger

tiles naturally yield fewer fully ineffectual tiles due to decreased

sparsity granularity.

6.4 Data Reuse Analysis
We compute on-chip data reuse as the number of accesses per row

of the dense input (𝐵) and output (𝐶) matrices in SpMM before evic-

tion, expressed as a percentage of the theoretical reuse assuming

an unlimited GLB without tiling. As shown in Figure 14, Aquila

achieves 72.12% of theoretical reuse on average. It improves reuse

by 32.2% over prior work on average, outperforming HotTiles and

I-GCN by 31.8% and 29.9%, respectively. This stems from vertex de-

composition, which records parent and child reuse in different tiles;

adaptive depth traversal, which aligns NNZs across non-contiguous

tiles; and push-after-pull dataflow, which maximizes reuse within

each tile for both dense and output matrices.

6.5 Workload Balance
Figure 16 compares workload balance across datasets, focusing on

the distribution of NNZ elements per PE. Aquila demonstrates a

significantly more balanced degree distribution compared to Sex-

tans and I-GCN. While the mean degree per partition for Aquila

(1548.94) is similar to I-GCN (1544.00), its standard deviation is

much smaller at 105.44, compared to 175.51 for I-GCN and 336.87

for Sextans. This indicates that Aquila’s partition degrees are tightly

clustered around the mean, ensuring more uniformity. In contrast,

the higher standard deviations in Sextans and I-GCN reflect greater

variability, with some partitions having disproportionately high or

low workloads. Sextans lacks a mechanism to handle high-degree

vertices, making its workload balance highly dependent on the

graph’s degree distribution. I-GCN exacerbates this imbalance by

clustering high-degree vertices into a few partitions using a BFS

strategy, which creates dense regions while leaving other partitions

sparsely connected compared to early-forming partitions. Aquila’s

superior balance stems from its vertex decomposition strategy,

which resolves skewed degree distributions by ensuring vertices
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Figure 18: Preprocessing breakdown in Aquila.
have equalized degrees regardless of partitioning, leading to better

workload balance.

6.6 Energy Efficiency
We compare the energy consumption of Aquila with Sextans and

I-GCN, two representative baselines, as shown in Figure 17. Across

all datasets, Aquila reduces energy consumption by an average of

60.5% and 55.7% when compared to Sextans and I-GCN, respec-

tively. The reduction is attributed to Aquila’s strategy of retaining

frequently accessed vertices in parent buffer, achieving an order-of-

magnitude reduction of off-chip memory access. Additionally, the

ADT algorithm increases the edge-to-vertex ratio per PE, ensuring

that neighboring vertices are often processed within the same PE,

thereby minimizing on-chip data movement. Moreover, distributing

child vertices across multiple PEs as replicas of frequently accessed

vertices significantly decreases global buffer access.

6.7 Preprocessing Analysis
To assess preprocessing overhead, Figure 18 (left) shows it accounts

for an average of 7.34% of total runtime across all datasets, demon-

strating the NCT engine’s efficiency in generating tiles before

SpMM execution. As density increases (e.g. in the MIN dataset

with 10% sparsity), preprocessing reaches 14.74%. The overhead

grows due to the longer traversal required for vertex decomposition

and ADT in denser matrices. Further, to analyze preprocessing over-

head across Vertex Decomposition, ADT, and Conflict Management

units, we use the Edge-to-Vertex (E2V) ratio as the key indicator,

as shown in Figure 18 (right). PMED, with a low E2V of 4.5, spends

16.7% of time on vertex decomposition, since few vertices exceed

the maximum degree threshold. In contrast, MIN’s extreme E2V

of 12,800 leads to 36.2% spent on decomposition, as more vertices

exceed the degree threshold, and 30.4% on conflict management

due to complex parent-child structures and denser connectivity.

SER, with a moderate E2V of 46.1, achieves balanced overhead

across phases thanks to its regular geometric structure. Overall,
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LLM workloads incur the highest preprocessing costs (≈ 13%) due

to dense connectivity and SpMM kernels involving a graph (e.g.,

PMED) benefit from efficient traversal with minimal decomposition

due to their community-based structures.

6.8 Area Consumption Analysis
Figure 19 shows the area distribution of Aquila’s accelerator. The

global buffer accounts for 34.09% and the PE array uses 61.47% of

the total chip area. In contrast, the CPA and NCT engine together

occupy only about 2.82%, highlighting the minimal area overhead of

Aquila’s auxiliary hardware components. The detailed area break-

down for the PE is illustrated in Figure 19(a), where buffers consume

52.63% and MACs array uses 47.24% of the PE area. Additionally,

Figure 19(c) provides a breakdown of the NCT engine’s area. The

Conflict Management Unit dominates the NCT engine’s area, occu-

pying about 41.13%. This unit includes buffers and FIFOs to stage

vertex streams, handle potential conflicts during the ADT process,

and assign vertices to partitions.

6.9 Sensitivity, Scalability and Ablation Study
Sensitivity Study on GLB Size. Figure 21 shows how GLB size

scaling affects off-chip memory access across datasets. We observe

an inverse relationship between the density of the sparse matrix

and the benefit from GLB scaling: datasets with higher density

see less reductions in memory access as GLB size increases. For

example, RED, with a 492 edge to vertex (E2V) ratio, achieves 1 to

4.2× improvement when scaling GLB from 1MB to 8MB, whereas

GAP, the dataset with the largest dimension 23.95M and an E2V

ratio of 2.4, sees a 1 to 6.0× gain. This is because the less density of

this dataset reduces number of dependency between the partitions

(tiles) that should be loaded to the on-chip memory each time.

Scalability Study on PE Numbers. Figure 20 illustrates the
normalized speedup of four representative datasets when scaling

from 8 to 512 PEs in Aquila. The results demonstrate a correla-

tion between graph density and scalability. PAP, with the highest

edge-to-vertex ratio (E2V=73.9), achieves the best scaling with 20×
speedup at 512 PEs, while the sparse GAP dataset reaches only
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Figure 21: Memory access reduction with varying GLB size
(Normalized to the memory access count of GLB = 1MB).
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15× speedup. WIKI and SER datasets exhibit intermediate scaling

behavior proportional to their respective densities, with SER out-

performing WIKI across all PE configurations.

Ablation Study.We performed an ablation study to evaluate the

individual benefits of non-contiguous tiling and PaP dataflow, as

well as their combined effectiveness, measuring improvements over

a baseline implementation using simple index-based tiling with pull-

based dataflow, as shown in Figure 22. Our results demonstrate that

the combined approach achieves an average of 10.30× performance

improvement across all evaluated datasets, significantly outper-

forming tiling-only (5.58× average) and PaP-only (1.91× average)
implementations. The superior performance of PaP dataflow when

combined with non-contiguous tiling, compared to its standalone

application, stems from the increased tile density achieved through

non-contiguous tiling, as illustrated in Figure 16.

7 Conclusion
In this paper, we propose a set of algorithms built on top of a graph

abstraction framework to reengineer SpMM kernel execution. We

also introduce Aquila, a specialized accelerator that supports these

graph transformations in real time. Algorithmically, we reinterpret

SpMM tiling and reuse using its graph abstraction beyond tradi-

tional loop transformations. We propose a non-contiguous tiling
technique combined with a novel pull-after-push dataflow, which

enhances both temporal and spatial reuse across all matrices, elimi-

nates partial result accumulation and write conflicts, and ensures

balanced workloads. Architecturally, we design a Bidirectional Fiber
Tree format to match the access patterns of the pull-after-push

dataflow, replacing rigid row- or column-major dataflows. Built on

this foundation, Aquila supports diverse SpMM kernels with vary-

ing dimensions and sparsity patterns under a unified architecture.

Simulation results show that Aquila achieves average speedups of

4.3×, 3.4×, 3.7×, 2.9×, and 2.7× reductions in execution time and up

to 4.8× improvements in energy efficiency across multiple sparse

datasets, compared to state-of-the-art accelerators [7, 15–17, 49].

Acknowledgments
This work is supported by the U.S. National Science Foundation

under CAREER Award CCF-2441973.



Rethinking Tiling and Dataflow for SpMM Acceleration: A Graph Transformation Framework MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea

References
[1] Khalid Ahmad, Anand Venkat, and Mary Hall. 2016. Optimizing LOBPCG: Sparse

matrix loop and data transformations in action. In Proceedings of International
Workshop on Languages and Compilers for Parallel Computing (LCPC). Springer,
218–232.

[2] Hasan Metin Aktulga, Aydin Buluç, Samuel Williams, and Chao Yang. 2014. Op-

timizing sparse matrix-multiple vectors multiplication for nuclear configuration

interaction calculations. In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 1213–1222.

[3] Vignesh Balaji, Neal C Crago, Aamer Jaleel, and Stephen W Keckler. 2023.

Community-based matrix reordering for sparse linear algebra optimization. In

2023 IEEE International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS). IEEE, 214–223.

[4] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,

and Vaishnav Srinivas. 2017. CACTI 7: New tools for interconnect exploration

in innovative off-chip memories. ACM Transactions on Architecture and Code
Optimization (TACO) 14, 2 (2017), 1–25.

[5] Nathan Bell, Steven Dalton, and Luke N Olson. 2012. Exposing fine-grained

parallelism in algebraic multigrid methods. SIAM Journal on Scientific Computing
34, 4 (2012), C123–C152.

[6] Timothy M Chan. 2007. More algorithms for all-pairs shortest paths in weighted

graphs. In Proceedings of the thirty-ninth annual ACM symposium on Theory of
computing (STOC). ACM, 590–598.

[7] Cen Chen, Kenli Li, Yangfan Li, and Xiaofeng Zou. 2022. ReGNN: A redundancy-

eliminated graph neural networks accelerator. In Proceedings of IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 429–443.

[8] Guohao Dai, Guyue Huang, Shang Yang, Zhongming Yu, Hengrui Zhang, Yufei

Ding, Yuan Xie, Huazhong Yang, and Yu Wang. 2022. Heuristic adaptability to

input dynamics for spmm on gpus. In Proceedings of ACM/IEEE Design Automation
Conference (DAC). IEEE, 595–600.

[9] Timothy A Davis, John R Gilbert, Stefan I Larimore, and Esmond G Ng. 2004. A

column approximate minimum degree ordering algorithm. ACM Transactions on
Mathematical Software (TOMS) 30, 3 (2004), 353–376.

[10] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix

collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),

1–25.

[11] Ruibo Fan, Wei Wang, and Xiaowen Chu. 2024. DTC-SpMM: Bridging the Gap in

Accelerating General Sparse Matrix Multiplication with Tensor Cores. In Proceed-
ings of ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 253–267.

[12] Sanjay Gandham, Lingxiang Yin, Hao Zheng, and Mingjie Lin. 2023. SAGA:

Sparsity-Agnostic Graph Convolutional Network Acceleration with Near-

Optimal Workload Balance. In Proceedings of IEEE/ACM International Conference
On Computer Aided Design (ICCAD). IEEE, 1–9.

[13] Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi,

Junjie Lai, Hayden Kwok-Hay So, Ting Cao, Fan Yang, et al. 2024. Seerattention:

Learning intrinsic sparse attention in your llms. arXiv preprint arXiv:2410.13276
(2024).

[14] Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tianqi Wang, Yanfei Li, Pouya

Haghi, Antonino Tumeo, Shuai Che, Steve Reinhardt, and Martin C. Herbordt.

2020. AWB-GCN: A graph convolutional network accelerator with runtime

workload rebalancing. In Proceedings of IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 922–936.

[15] Tong Geng, Chunshu Wu, Yongan Zhang, Cheng Tan, Chenhao Xie, Haoran You,

Martin Herbordt, Yingyan Lin, and Ang Li. 2021. I-GCN: A graph convolutional

network accelerator with runtime locality enhancement through islandization. In

Proceedings of IEEE/ACM international symposium on microarchitecture (MICRO).
IEEE, 1051–1063.

[16] Gerasimos Gerogiannis, Sriram Aananthakrishnan, Josep Torrellas, and Ibrahim

Hur. 2024. HotTiles: Accelerating SpMM with Heterogeneous Accelerator Archi-

tectures. In Proceedings of IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 1012–1028.

[17] Gerasimos Gerogiannis, Serif Yesil, Damitha Lenadora, Dingyuan Cao, Charith

Mendis, and Josep Torrellas. 2023. Spade: A flexible and scalable accelerator

for spmm and sddmm. In Proceedings of ACM/IEEE International Symposium on
Computer Architecture (ISCA). IEEE, 1–15.

[18] John R Gilbert, Steve Reinhardt, and Viral B Shah. 2006. High-performance graph

algorithms from parallel sparse matrices. In Proceedings of International Workshop
on Applied Parallel Computing (PARA). Springer, 260–269.

[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation

Learning on Large Graphs. In Proceedings of International Conference on Neural
Information Processing Systems (NIPS). ACM, 1025–1035.

[20] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding.

arXiv preprint arXiv:1510.00149 (2015).
[21] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer

Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher. 2019. Extensor:

An accelerator for sparse tensor algebra. In Proceedings of IEEE/ACM International

Symposium on Microarchitecture (MICRO). IEEE, 319–333.
[22] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael Pellauer, and

Christopher Fletcher. 2018. UCNN: Exploiting computational reuse in deep

neural networks via weight repetition. In Proceedings of ACM/IEEE International
Symposium on Computer Architecture (ISCA). IEEE, 674–687.

[23] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P

Sadayappan. 2019. Adaptive sparse tiling for sparse matrix multiplication. In

Proceedings of ACM SIGPLAN symposium on principles and practice of parallel
programming (PPoPP). ACM, 300–314.

[24] Yi-Jou Hsiao, Chin-Fu Nien, and Hsiang-Yun Cheng. 2021. ReSpar: Reordering

Algorithm for ReRAM-based Sparse Matrix-Vector Multiplication Accelerator.

In Proceedings of IEEE 39st International Conference on Computer Design (ICCD).
IEEE, 260–268.

[25] Ranggi Hwang, Minhoo Kang, Jiwon Lee, Dongyun Kam, Youngjoo Lee, and

Minsoo Rhu. 2022. GROW: A Row-Stationary Sparse-Dense GEMM Accelerator

for Memory-Efficient Graph Convolutional Neural Networks. In Proceedings
of IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 42–55.

[26] Zhihao Jia, Sina Lin, Rex Ying, Jiaxuan You, Jure Leskovec, and Alex Aiken. 2020.

Redundancy-free computation for graph neural networks. In Proceedings of ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD).
ACM, 997–1005.

[27] Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo,

Surin Ahn, Zhenhua Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. 2024.

Minference 1.0: Accelerating pre-filling for long-context llms via dynamic sparse

attention. arXiv preprint arXiv:2407.02490 (2024).
[28] Peng Jiang, Changwan Hong, and Gagan Agrawal. 2020. A novel data transfor-

mation and execution strategy for accelerating sparse matrix multiplication on

GPUs. In Proceedings of ACM SIGPLAN symposium on principles and practice of
parallel programming (PPoPP). ACM, 376–388.

[29] Jinkwon Kim, Myeongjae Jang, Haejin Nam, and Soontae Kim. 2023. HARP:

Hardware-Based Pseudo-Tiling for Sparse Matrix Multiplication Accelerator. In

Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchi-
tecture. 1148–1162.

[30] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2015. Ramulator: A Fast and

Extensible DRAM Simulator. IEEE Computer architecture letters 15, 1 (2015),

45–49.

[31] Paolo Sylos Labini, Massimo Bernaschi, Werner Nutt, Francesco Silvestri, and

Flavio Vella. 2022. Blocking Sparse Matrices to Leverage Dense-Specific Multipli-

cation. In Proceedings of IEEE/ACM Workshop on Irregular Applications: Architec-
tures and Algorithms (IA3). IEEE, 19–24.

[32] Eunji Lee, Yoonsang Han, and Gordon Euhyun Moon. 2024. Accelerated block-

sparsity-aware matrix reordering for leveraging tensor cores in sparse matrix-

multivector multiplication. In Proceedings of European Conference on Parallel
Processing (Euro-Par). Springer, 3–16.

[33] Jiajun Li, Ahmed Louri, Avinash Karanth, and Razvan Bunescu. 2021. GCNAX: A

flexible and energy-efficient accelerator for graph convolutional neural networks.

In Proceedings of IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 775–788.

[34] Zhiyao Li, Jiaxiang Li, Taijie Chen, Dimin Niu, Hongzhong Zheng, Yuan Xie,

and Mingyu Gao. 2023. Spada: Accelerating sparse matrix multiplication with

adaptive dataflow. In Proceedings of ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). ACM, 747–

761.

[35] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. 2021. A survey

of convolutional neural networks: analysis, applications, and prospects. IEEE
transactions on neural networks and learning systems 33, 12 (2021), 6999–7019.

[36] Xiaoyang Lu, Boyu Long, Xiaoming Chen, Yinhe Han, and Xian-He Sun. 2024.

ACES: Accelerating Sparse Matrix Multiplication with Adaptive Execution Flow

and Concurrency-Aware Cache Optimizations. In Proceedings of ACM Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS). ACM, 71–85.

[37] Chris Mueller. 2004. Sparse matrix reordering algorithms for cluster identification.

Machune Learning in Bioinformatics 23 (2004).
[38] Francisco Muñoz-Martínez, Raveesh Garg, Michael Pellauer, José L Abellán,

Manuel E Acacio, and Tushar Krishna. 2023. Flexagon: A multi-dataflow sparse-

sparse matrix multiplication accelerator for efficient dnn processing. In Proceed-
ings of ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 252–265.

[39] Mark EJ Newman, Duncan J Watts, and Steven H Strogatz. 2002. Random graph

models of social networks. Proceedings of the national academy of sciences 99,
suppl_1 (2002), 2566–2572.

[40] Michael K Ng and Zhaochen Zhu. 2019. Sparse matrix computation for air quality

forecast data assimilation. Numerical Algorithms 80 (2019), 687–707.
[41] Israt Nisa, Aravind Sukumaran-Rajam, Sureyya Emre Kurt, Changwan Hong, and

P Sadayappan. 2018. Sampled dense matrix multiplication for high-performance

machine learning. In Proceedings of 25th International Conference on High Perfor-
mance Computing (HiPC). IEEE, 32–41.



MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Amir Ghazizadeh, Lingxiang Yin, Shilin Tian, Fangzhou Ye, Fan Yao, and Hao Zheng

[42] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr: Transform-

ing irregular graphs for gpu-friendly graph processing. In Proceedings of ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 622–636.

[43] S. Pal, J. Beaumont, D. Park, A. Amarnath, S. Feng, C. Chakrabarti, H. Kim, D.

Blaauw, T. Mudge, and R. Dreslinski. 2018. OuterSPACE: An outer product based

sparse matrix multiplication accelerator. In Proceedings of IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 724–736.

[44] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-

ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge,

and Ronald Dreslinski. 2018. Outerspace: An outer product based sparse ma-

trix multiplication accelerator. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 724–736.

[45] Xavier Pinel and Marc Montagnac. 2013. Block Krylov methods to solve adjoint

problems in aerodynamic design optimization. AIAA journal 51, 9 (2013), 2183–
2191.

[46] Yingjie Qi, Jianlei Yang, Ao Zhou, Tong Qiao, and Chunming Hu. 2023. Ar-

chitectural implications of GNN aggregation programming abstractions. IEEE
Computer Architecture Letters 23, 1 (2023), 125–128.

[47] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-

vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. Sigma: A sparse

and irregular gemm accelerator with flexible interconnects for dnn training. In

2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 58–70.

[48] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[49] Linghao Song, Yuze Chi, Atefeh Sohrabizadeh, Young-kyu Choi, Jason Lau, and

Jason Cong. 2022. Sextans: A streaming accelerator for general-purpose sparse-

matrix dense-matrix multiplication. In Proceedings of ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA). ACM, 65–77.

[50] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.

Matraptor: A sparse-sparse matrix multiplication accelerator based on row-wise

product. In Proceedings of IEEE/ACM International Symposium onMicroarchitecture
(MICRO). IEEE, 766–780.

[51] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient

processing of deep neural networks: A tutorial and survey. Proc. IEEE 105, 12

(2017), 2295–2329.

[52] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. 2011. The

anatomy of the facebook social graph. arXiv preprint arXiv:1111.4503 (2011).
[53] Richard W Vuduc and Hyun-Jin Moon. 2005. Fast sparse matrix-vector multipli-

cation by exploiting variable block structure. In Proceedings of High Performance
Computing and Communications (HPCC). Springer, 807–816.

[54] BradleyWorley and Robert Powers. 2015. Deterministic multidimensional nonuni-

form gap sampling. Journal of magnetic resonance 261 (2015), 19–26.
[55] Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, and Joel S

Emer. 2022. Sparseloop: An analytical approach to sparse tensor accelerator

modeling. In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 1377–1395.

[56] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin

Zhang, Dongrui Fan, and Yuan Xie. 2020. HyGCN: A GCN accelerator with hybrid

architecture. In Proceedings of IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 15–29.

[57] Jiaqi Yang, Hao Zheng, and Ahmed Louri. 2022. Adapt-flow: A flexible dnn accel-

erator architecture for heterogeneous dataflow implementation. In Proceedings
of the Great Lakes Symposium on VLSI (GLSVLSI). ACM, 287–292.

[58] Jiaqi Yang, Hao Zheng, and Ahmed Louri. 2024. Aurora: A versatile and flexible

accelerator for graph neural networks. In Proceedings of IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 890–902.

[59] Yifan Yang, Joel S Emer, and Daniel Sanchez. 2024. Trapezoid: A Versatile Accel-

erator for Dense and Sparse Matrix Multiplications. In Proceedings of ACM/IEEE
International Symposium on Computer Architecture (ISCA). IEEE, 931–945.

[60] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-

supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[61] Fangzhou Ye, Lingxiang Yin, Amir Ahsaei Ghazizadeh, and Hao Zheng. 2024.

EGMA: Enhancing Data Reuse andWorkload Balancing in Message Passing GNN

Acceleration via Gram Matrix Optimization. In Proceedings of ACM/IEEE Design
Automation Conference (DAC). IEEE.

[62] Lingxiang Yin, Sanjay Gandham, Mingjie Lin, and Hao Zheng. 2024. SCALE: A

Structure-Centric Accelerator for Message Passing Graph Neural Networks. In

Proceedings of IEEE/ACM international symposium on microarchitecture (MICRO).
IEEE, 580–593.

[63] Lingxiang Yin, Amir Ghazizadeh, Shilin Tian, Ahmed Louri, and Hao Zheng.

2023. Polyform: A versatile architecture for multi-dnn execution via spatial and

temporal acceleration. In Proceedings of IEEE 39st International Conference on
Computer Design (ICCD). IEEE, 166–169.

[64] Lingxiang Yin, JunWang, and Hao Zheng. 2023. Exploring Architecture, Dataflow,

and Sparsity for GCN Accelerators: A Holistic Framework. In Proceedings of the
Great Lakes Symposium on VLSI (GLSVLSI). ACM, 489–495.

[65] Haoran You, Tong Geng, Yongan Zhang, Ang Li, and Yingyan Lin. 2022. Gcod:

Graph convolutional network acceleration via dedicated algorithm and ac-

celerator co-design. In Proceedings of IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 460–474.

[66] Raphael Yuster and Uri Zwick. 2004. Detecting short directed cycles using

rectangular matrix multiplication and dynamic programming.. In Proceedings of
the annual ACM-SIAM symposium on Discrete algorithms (SODA). ACM, 254–260.

[67] Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez. 2021. Gamma:

Leveraging Gustavson’s algorithm to accelerate sparse matrix multiplication. In

Proceedings of ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). ACM, 687–701.

[68] Xiaoyu Zhang, Zerun Li, Rui Liu, Xiaoming Chen, and Yinhe Han. 2024. GAS:

General-Purpose In-Memory-Computing Accelerator for Sparse Matrix Multipli-

cation. IEEE Trans. Comput. (2024).
[69] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. 2020. Sparch:

Efficient architecture for sparse matrix multiplication. In Proceedings of IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 261–274.


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 SpMM Dataflows
	2.2 Traditional Tiling Methods and Limitations

	3 Graph Abstraction of SpMM kernels
	3.1 Non-contiguous Tiling

	4 Pull-after-Push Dataflow
	4.1 Bidirectional Fiber Tree (BFT) Format

	5 Aquila Accelerator
	5.1 Non-contiguous Tiling (NCT) Engine
	5.2 PE Microarchitecture for PaP Dataflow
	5.3 Child-Parent Aggregator Unit

	6 Evaluation
	6.1 Simulation Setup
	6.2 Performance Analysis
	6.3 Off-Chip Memory Access
	6.4 Data Reuse Analysis
	6.5 Workload Balance
	6.6 Energy Efficiency
	6.7 Preprocessing Analysis
	6.8 Area Consumption Analysis
	6.9 Sensitivity, Scalability and Ablation Study

	7 Conclusion
	Acknowledgments
	References

